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Our work is about

Testing Entanglement
in pure quantum states
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is a vector in tensor product space C? ® C
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State of n qudits

is a vector in tensor product space (C%)*"
YP) = ?1,...,1',,:1 ai, i lix) - [iy)
a;.i.. €C [[[P)ll, =1

Again state |y) can be product or entangled:

[P) # [P1) @ [P2) - Q [Pn)
Entangled state



Questions we can ask:

Is a state ) entangled or product?

How entangled is a state |y)?

Long history in quantum information:

Bell test or quantum games Quantum cryptography
Tensor optimization Hamiltonian complexity

Quantum many-body physics



This talk:

Statistical theory of
many-body entanglement



Property testing model

Entanglement tester is an algorithm A such that

1. If ) has at most certain amount of entanglement
Pl‘[a‘l accepts given |l[))®m] > 2/3 Completeness

2. If |y) is far from states
with at most certain amount of entanglement

Pr|A accepts given [)®™| < 1/3  Soundness

What is the fewest number of copies m
needed for entanglement testing?



One way to quantify
many-body entanglement



MPS(7): Matrix product states . .
with bond dimension r
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Bond dimensionr =1



MPS(7r): Matrix product states % %
with bond dimension r

A, Ay, ... A
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MPS(7r): Matrix product states % %
with bond dimension r

A, 45, ..., A
_ wd “\ | 1,422, ==y £2d
|II)> T Liq,ip=1 tr[Ai B]] . |l> |]> Bl! Bz, ...,Bd

rxr complex matrices
1 1
Example: |Y) = " |11)|1) + -+ N |d)|d)
Needs bond dimension r = d

If r = d, any state |y) can be written as an MPS

Bond dim limits the amount of entanglement



MPS(7r): Matrix product states N R
with bond dimension r

1 . .
P) = ?1,...,in=1tr [A§1)°°°A§,’f) g} e lip)

(1) 4 L)
AR A%, ..., A

(2) A(2) (2)
A1% A5 0407 1 complex matrices

) ) 4@
A™ A A

If r~d", any state |Y) can be written as an MPS
Bond dim limits the amount of entanglement

Many states 1 of interest in physics are
MPS of small bond dimension r



Alternative characterization of MPS



MPS(r): Matrix product states
with bond dimension r

Another view of MPS(7) in terms of:
Reduced state p; | =tri, 1, (Y1, V1, 0l
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MPS(r): Matrix product states
with bond dimension r

Another view of MPS(7) in terms of:
Reduced state p; | =tri, 1, (Y1, V1, 0l

rank(p; ;)<r for 1<L<n



Let’s go back to testing entanglement



Property testing model

MPS tester is an algorithm A such that

1. If |y) € MPS(r) then
Pr[cﬂ accepts given |l[))®m] > 2/3 Completeness

2. If Dist,.(|yp)) = 6 then
Pr[cﬂ accepts given |1[))®m] < 1/3 Ssoundness

What does it mean for |) to be far from MPS(r)?

Overlap,(|y)) = max [(P|p)|

|)EMPS ()

Dist,([)) = min Dy..(¥,@d) = min /1 [(P|d)]?

|p)EMPS(7) |PpYEMPS(1)

Dist,.(|y)) = /1 — Overlap,.(|y))




Property testing model

MPS tester is an algorithm A such that

1. If [¢p) € MPS(r) then

Pr[cﬂ accepts given |l[))®m] => 2/3 Completeness
2. If Dist.(|y)) = 6 then

Pr[c/l accepts given |1[))®m] < 1/3 Ssoundness

Goal: Finding the smallest number of copies m

number of qudits n
for a given - bond dimension r
distance §



MPS testing whenr =1
(Product testing)



Product test (testing MPS(r) with r = 1)

Accept Reject [Mintert, Kus, Buchleitner]
‘ ‘ [Harrow and Montanaro]

- Measure {ITsyap, I — Mswap}
on all pairs of qudits in |)®?

[+SWAP [—-SWAP
Ogwap = —— 1—Hswap = —;

Pr[SWAP test accepts p ®Q p| = % + %tr[pz]
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Product test (testing MPS(r) with r = 1)

[AM13]: Product states pass this test

with probability 1

1Y) = 1P1) @ - Qi) ® -+ ® |Pn)
¥) = ¥1) ® - ®I¢k).® '@ [Pn)

\———

@21 _ 1 2
Pr[SWAP test accepts [Y;) ] =3 + > |(1pk|1pk)| =1



Product test (testing MPS(r) with r = 1)

HM13]J:
[ ! Product states pass this test

with probability 1
States 6-far from product fail this test
with probability Q.(6%)
Why?
Entangled |/, ) means some mixed subsystems with tr|p?| < 1
Pr[SWAP test accepts p ® p] = % + %tr[pz] <1
¥ . 9 X (K
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Product test (testing MPS(r) with r = 1)

HM13]:
[ ! Product states pass this test

with probability 1

States 6-far from product fail this test
with probability Q.(6%)

Rejection probability can be boosted to 2/3
by repeating on m = 0( ) pairs



Product test (testing MPS(r) with r = 1)

HM13]:
[ ! Product states pass this test

with probability 1

States 6-far from product fail this test
with probability Q.(6%)

This implies QMA(k) = QMA(2) for k > 2 [HM13]
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Product test (testing MPS(r) with r = 1)

HM13]:
[ ! Product states pass this test

with probability 1

States 6-far from product fail this test
with probability Q.(6%)

This implies QMA(k) = QMA(2) for k > 2 [HM13]

With applications in hardness of tensor optimization problems

Open problem of [HM13] and [MdW13]:

Can proof of product test be simplified and improved?



Result 1

Improved and simple analysis of
product test



Proof sketch of product test

Schmidt decomposition

1Y) = A1 |aq)|b1) + /22 |az)|b2) + -+ + 24 |ag) | bg)
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Proof sketch of product test

Schmidt decomposition

1Y) = A1 |aq)|b1) + /22 |az)|b2) + -+ + 24 |ag) | bg)

A =2A,=>>2;=0 la;) € (Cd, |b;) € ((Cd)@)n—l
).1+Az+“'/1d — 1

Suppose |Y) is far from product.

If A, is small:

1t qudit is highly entangled with the rest
1st SWAP test rejects with good probability
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Proof sketch of product test

Schmidt decomposition

1Y) = A1 |aq)|b1) + /22 |az)|b2) + -+ + 24 |ag) | bg)

M2y 22420 g e cd by € (C4)B !
AI_I—AZ—I—'”Ad —_ 1

Suppose |Y) is far from product.
If A, Is large:

P) = |aq) @ |by) and 15t SWAP test accepts
But for |y) to be far from product

|b1) has to be far from product

Remaining SWAP tests reject with high prob.
(by induction)



Proof sketch of product test

Schmidt decomposition

1Y) = A1 |aq)|b1) + /22 |az)|b2) + -+ + 24 |ag) | bg)

M2y 22420 g e cd by € (C4)B !
AI_I—AZ-I—'”Ad —_ 1

Given |¢) that is §-far from product states,

5% — &4 5<.1/2

2 1 .
3 6% — 5 o otherwise
.

)
Pr[Product test rejects |1))®?] > <

Our bound in tight forn > 2,6 < ,/1/2 as shown by

[P) =V 1 -6 [1)[]1) + §2)|2)



Result 2

Testing MPS(r) with r > 2
Upper bound and Lower bound



Testing MPS(r) with r > 2
Main ingredient is the rank tester of O’Donnell and Wright

[OW15]

Tests if rank(p) < r or p is e-far from rank- r states
using m = ©(r*/¢) copies

Uses generalized SWAP test called weak Schur sampling

Optimal test with perfect completeness and 0(1) soundness

Can be performed with a quantum circuit
of size poly(m,log d)

[Krovi19], [Harrow05]



Testing MPS(r) with r > 2

m
}copies

|¢1n>

Our MPS tester

1) Simultaneously performs rank tester {I1_,., I — Il _,.}
onqudits 1,...,Lforeach1<L<n

2) Rejects if any of the rank testers reject



Testing MPS(r) with r > 2

Upper bound: Our MPS tester requires m = 0(nr?/5%)
Proof relies on

1) 3Cut (4, B) where p, is Q(6%/n)-far from being rank r

=> Rank tester with m = 0(nr? /&) detects this w.h.p

[YaB)

m copies

[¥e) - e

Rank tester rejects



Testing MPS(r) with r > 2

Upper bound: Our MPS tester requires m = 0(nr?/§%)
Proof relies on

1) 3Cut (4, B) where p, is Q(6%/n)-far from being rank r
=> Rank tester with m = 0(nr? /&) detects this w.h.p

2) The rank tester projectors mutually commute

lIjl,...,n

lI)1,...,n



Testing MPS(r) with r > 2

Can this analysis of be improved
to show m = 0(1) copies are sufficient?

Can be done for the “bunny state”:

1

b.) =
b} =

|24 3 3 3 )+ |3 B 3 3w W)+ | e e 24)

- |b,,) € MPS(3) and ,/1/3-far from MPS(2)

- The r = 2 MPS tester rejects |b,,)®? with probability >

N =



Testing MPS(r) with r > 2

Can this analysis of be improved
to show m = 0(1) copies are sufficient?

Can’t be done for general states!

Lower bound:
Any MPS tester requires m = Q(\/n/§%)

The hard example: |) and its random local rotations

where |¢) is 1/ /n-far from MPS(r)

Py =gt ¥ F FH - ¥ K

[y [y [



Testing MPS(r) with r > 2

Lower bound: Any MPS tester requires m = Q(+/n/5%)
Proof relies on

1) Overlap,(|¢)) =  then Overlap,.(|¢)®"/?) = @™/?
w ~ 1 — 1/n then Overlap,.(|¢$)®™2) ~ 1/2
2) 3|y) € MPS(r) such that unless m = Q(1/n)

. ®n/
(Byy (U V- 19)I- Ut@ vt )®™)

m Qn/2
~ (BEyy(U® V- In)yl Ut @ V1))

Py =gt ¥ FH X - X K

[y [y [



Summary

Developed algorithms for testing matrix product states
1) Simple and improved analysis of the product test
2) Upper bound of 0(n) for MPS testing with bond dim > 2

3) Lower bound of Q(1/n) for MPS testing with bond dim > 2



Open questions

1) Optimal copy complexity of MSP(r) testing for r > 2
2) Testing more general entangled states e.g. tensor networks

3) Testing if a mixed quantum state is separable (unentangled)
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