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Our work is about

Testing Entanglement 
in pure quantum states



State of 2 qudits
is a vector in tensor product space ℂ𝒅 ⊗ ℂ𝒅

|𝝍⟩ = ∑ 	𝒂𝒊𝟏𝒊𝟐 ⋅ 𝒊𝟏
𝒅
𝒊𝟏,𝒊𝟐0𝟏 |𝒊𝟐⟩

𝒂𝒊𝟏𝒊𝟐 ∈ ℂ, |𝝍⟩ 𝟐 = 𝟏

|𝝍⟩ = |𝝍𝟏⟩ ⊗ |𝝍𝟐⟩

Product state



State of 2 qudits
is a vector in tensor product space ℂ𝒅 ⊗ ℂ𝒅

|𝝍⟩ = ∑ 	𝒂𝒊𝟏𝒊𝟐 ⋅ 𝒊𝟏
𝒅
𝒊𝟏,𝒊𝟐0𝟏 |𝒊𝟐⟩

𝒂𝒊𝟏𝒊𝟐 ∈ ℂ, |𝝍⟩ 𝟐 = 𝟏

|𝝍⟩ ≠ |𝝍𝟏⟩ ⊗ |𝝍𝟐⟩

Entangled state



. . .

State of 𝒏 qudits

is a vector in tensor product space ℂ𝒅 ⊗𝒏

|𝝍⟩ = ∑ 𝒂𝒊𝟏…𝒊𝒏 𝒊𝟏 ⋯𝒅
𝒊𝟏,…,𝒊𝒏0𝟏 |𝒊𝒏⟩

𝒂𝒊𝟏…𝒊𝒏 ∈ ℂ	 |𝝍⟩ 𝟐 = 𝟏

Again state |𝝍⟩ can be product or entangled: 

𝝍 = 𝝍𝟏 ⊗ 𝝍𝟐 ⋯⊗ |𝝍𝒏⟩
Product state



. . .

State of 𝒏 qudits

is a vector in tensor product space ℂ𝒅 ⊗𝒏

|𝝍⟩ = ∑ 𝒂𝒊𝟏…𝒊𝒏 𝒊𝟏 ⋯𝒅
𝒊𝟏,…,𝒊𝒏0𝟏 |𝒊𝒏⟩

𝒂𝒊𝟏…𝒊𝒏 ∈ ℂ	 |𝝍⟩ 𝟐 = 𝟏

Again state |𝝍⟩ can be product or entangled: 

𝝍 ≠ 𝝍𝟏 ⊗ 𝝍𝟐 ⋯⊗ |𝝍𝒏⟩
Entangled state



Long history in quantum information:
Bell test or quantum games Quantum cryptography 
Tensor optimization  Hamiltonian complexity

Quantum many-body physics

. . .

Questions we can ask:

Is a state |𝝍⟩ entangled or product?

How entangled is a state |𝝍⟩?



This talk:

Statistical theory of
many-body entanglement



Property testing model

Entanglement tester is an algorithm 𝓐 such that

1. If |𝝍⟩ has at most certain amount of entanglement

𝐏𝐫 𝓐	𝐚𝐜𝐜𝐞𝐩𝐭𝐬	𝐠𝐢𝐯𝐞𝐧	|𝝍⟩⊗𝒎 ≥ 𝟐/𝟑

2. If |𝝍⟩ is far from states
with at most certain amount of entanglement

𝐏𝐫 𝓐	𝐚𝐜𝐜𝐞𝐩𝐭𝐬	𝐠𝐢𝐯𝐞𝐧	|𝝍⟩⊗𝒎 ≤ 𝟏/𝟑

Completeness

Soundness

What is the fewest number of copies 𝒎
needed for entanglement testing?



One way to quantify 
many-body entanglement



𝐌𝐏𝐒 𝒓 :	Matrix product states
with bond dimension 𝒓

|𝝍⟩ = ∑ 𝐭𝐫 𝑨𝒊	𝑩𝒋 ⋅ |𝒊⟩𝒅
𝒊𝟏,𝒊𝟐0𝟏 |𝒋⟩

Example: 
|𝝍⟩ = ∑ 𝒂𝒊 ⋅ |𝒊⟩𝒅

𝒊0𝟏 ⊗ ∑ 𝒃𝒋 ⋅ |𝒋⟩𝒅
𝒋0𝟏 											𝒂𝒊, 𝒃𝒋 ∈ ℂ

|𝝍⟩	 is a product state

𝑨𝒊 = 𝒂𝒊, 𝑩𝒋 = 𝒃𝒋

Bond dimension 𝒓 = 𝟏
	

𝑨𝟏, 𝑨𝟐, … , 𝑨𝒅
𝑩𝟏, 𝑩𝟐, … , 𝑩𝒅	
𝒓×𝒓	complex matrices



𝐌𝐏𝐒 𝒓 :	Matrix product states
with bond dimension 𝒓

|𝝍⟩ = ∑ 𝐭𝐫 𝑨𝒊	𝑩𝒋 ⋅ |𝒊⟩𝒅
𝒊𝟏,𝒊𝟐0𝟏 |𝒋⟩

Example:     |𝝍⟩ = 𝟏
𝟐� 	
|𝟏⟩|𝟏⟩ + 𝟏

𝟐� 	
|𝟐⟩|𝟐⟩

𝑨𝟏 = 𝟏/ 𝟐� 𝟎
𝟎 𝟎

, 𝑨𝟐 =
𝟎 𝟎
𝟎 𝟏 , 𝑨𝟑 = 𝟎,… , 𝑨𝒅 = 𝟎

𝑩𝟏 =
𝟏 𝟎
𝟎 𝟎 ,𝑩𝟐 =

𝟎 𝟎
𝟎 𝟏/ 𝟐� , 𝑩𝟑 = 𝟎,… ,𝑩𝒅 = 𝟎

Bond dimension 𝒓 = 𝟐

𝑨𝟏, 𝑨𝟐, … , 𝑨𝒅
𝑩𝟏, 𝑩𝟐, … , 𝑩𝒅	
𝒓×𝒓	complex matrices



𝐌𝐏𝐒 𝒓 :	Matrix product states
with bond dimension 𝒓

|𝝍⟩ = ∑ 𝐭𝐫 𝑨𝒊	𝑩𝒋 ⋅ |𝒊⟩𝒅
𝒊𝟏,𝒊𝟐0𝟏 |𝒋⟩

Example:     |𝝍⟩ = 𝟏
𝒅� 	
𝟏 |𝟏⟩ + ⋯+ 𝟏

𝒅� 	
|𝒅⟩|𝒅⟩

Needs bond dimension 𝒓 = 𝒅

If	𝒓 = 𝒅, any state |𝝍⟩ can be written as an MPS

Bond dim limits the amount of entanglement

𝑨𝟏, 𝑨𝟐, … , 𝑨𝒅
𝑩𝟏, 𝑩𝟐, … , 𝑩𝒅	
𝒓×𝒓	complex matrices



𝐌𝐏𝐒 𝒓 :	Matrix product states
with bond dimension 𝒓

|𝝍⟩ = ∑ 𝐭𝐫 𝑨𝒊𝟏
𝟏 ⋯𝑨𝒊𝒏

𝒏 ⋅ |𝒊𝟏⟩𝒅
𝒊𝟏,…,𝒊𝒏0𝟏 ⋯ |𝒊𝒏⟩

If	𝒓~𝒅𝒏, any state |𝝍⟩ can be written as an MPS
Bond dim limits the amount of entanglement

Many states 𝝍 of interest in physics are
MPS of small bond dimension 𝒓

𝑨𝟏
𝟏 , 𝑨𝟐

𝟏 , … , 𝑨𝒅
𝟏

𝑨𝟏
𝟐 , 𝑨𝟐

𝟐 , … , 𝑨𝒅
𝟐

⋮
𝑨𝟏

𝒏 , 𝑨𝟐
𝒏 , … , 𝑨𝒅

𝒏

𝒓×𝒓	complex matrices 

. . .



Alternative characterization of MPS



𝐌𝐏𝐒 𝒓 :	Matrix product states
with bond dimension 𝒓

Reduced state 𝝆𝟏,…,𝑳 = 𝐭𝐫𝑳X𝟏,…,𝒏	|𝝍𝟏,…,𝒏⟩⟨𝝍𝟏,…,𝒏|
Another	view	of	𝐌𝐏𝐒 𝒓 	in	terms	of:

|𝝍𝟏,…,𝒏⟩ . . .. . .
qudits 𝟏,… , 𝑳



𝐌𝐏𝐒 𝒓 :	Matrix product states
with bond dimension 𝒓

𝐫𝐚𝐧𝐤 𝝆𝟏,…,𝑳 ≤ 𝒓	 for     𝟏 ≤ 𝑳 ≤ 𝒏

Reduced state 𝝆𝟏,…,𝑳 = 𝐭𝐫𝑳X𝟏,…,𝒏	|𝝍𝟏,…,𝒏⟩⟨𝝍𝟏,…,𝒏|
Another	view	of	𝐌𝐏𝐒 𝒓 	in	terms	of:

|𝝍𝟏,…,𝒏⟩ . . . . . .
qudits 𝟏,… , 𝑳



Let’s go back to testing entanglement



Property testing model

MPS tester is an algorithm 𝓐 such that

1. If |𝝍⟩ ∈ 𝐌𝐏𝐒 𝒓 then
𝐏𝐫 𝓐	𝐚𝐜𝐜𝐞𝐩𝐭𝐬	𝐠𝐢𝐯𝐞𝐧	|𝝍⟩⊗𝒎 ≥ 𝟐/𝟑

2. If 𝐃𝐢𝐬𝐭𝒓 |𝝍⟩ ≥ 𝜹 then
𝐏𝐫 𝓐	𝐚𝐜𝐜𝐞𝐩𝐭𝐬	𝐠𝐢𝐯𝐞𝐧	|𝝍⟩⊗𝒎 ≤ 𝟏/𝟑

What does it mean for |𝝍⟩ to be far from 𝐌𝐏𝐒(𝒓)?

𝐎𝐯𝐞𝐫𝐥𝐚𝐩𝒓 |𝝍⟩ = 𝐦𝐚𝐱
|𝝓⟩∈𝐌𝐏𝐒(𝒓)

𝝍|𝝓 𝟐

𝐃𝐢𝐬𝐭𝒓 |𝝍⟩ = 𝐦𝐢𝐧
|𝝓⟩∈𝐌𝐏𝐒 𝒓

𝐃𝐭𝐫𝐚𝐜𝐞 𝝍,𝝓 = 𝐦𝐢𝐧
|𝝓⟩∈𝐌𝐏𝐒 𝒓

𝟏 − 𝝍|𝝓 𝟐�

𝐃𝐢𝐬𝐭𝒓 |𝝍⟩ = 𝟏 − 	𝐎𝐯𝐞𝐫𝐥𝐚𝐩𝒓 |𝝍⟩  �

Completeness

Soundness



Property testing model

MPS tester is an algorithm 𝓐 such that

1. If |𝝍⟩ ∈ 𝐌𝐏𝐒 𝒓 then
𝐏𝐫 𝓐	𝐚𝐜𝐜𝐞𝐩𝐭𝐬	𝐠𝐢𝐯𝐞𝐧	|𝝍⟩⊗𝒎 ≥ 𝟐/𝟑

2. If 𝐃𝐢𝐬𝐭𝒓 |𝝍⟩ ≥ 𝜹 then
𝐏𝐫 𝓐	𝐚𝐜𝐜𝐞𝐩𝐭𝐬	𝐠𝐢𝐯𝐞𝐧	|𝝍⟩⊗𝒎 ≤ 𝟏/𝟑

Completeness

Soundness

for a given

Goal: Finding the smallest number of copies𝒎

number of qudits 𝒏
bond dimension 𝒓
distance 𝜹



MPS testing when 𝒓 = 𝟏
(Product testing)



- Measure {𝜫𝐒𝐖𝐀𝐏, 𝐈 − 𝜫𝐒𝐖𝐀𝐏}
on all pairs of qudits in |𝝍⟩⊗𝟐

- Accept if observe the 1st outcome (i.e, 𝜫𝑺𝑾𝑨𝑷)
𝜫𝐒𝐖𝐀𝐏 = 	

𝐈X𝐒𝐖𝐀𝐏
𝟐

, 𝐈 − 𝜫𝐒𝐖𝐀𝐏 = 	
𝐈o𝐒𝐖𝐀𝐏

𝟐

𝐒𝐖𝐀𝐏 ⋅ 𝝍 |𝝓⟩ = |𝝓⟩|𝝍⟩
𝐏𝐫 𝐒𝐖𝐀𝐏	𝐭𝐞𝐬𝐭	𝐚𝐜𝐜𝐞𝐩𝐭𝐬	|𝝍⟩ ⊗ |𝝓⟩ = 𝟏

𝟐
+ 𝟏
𝟐
𝝍,𝝓 𝟐

Accept Reject

SWAP test

𝐏𝐫 𝐒𝐖𝐀𝐏	𝐭𝐞𝐬𝐭	𝐚𝐜𝐜𝐞𝐩𝐭𝐬	𝝆⊗ 𝝆 = 𝟏
𝟐
+ 𝟏

𝟐
𝐭𝐫[𝝆𝟐] Purity

- Accept if all SWAP tests accept

𝝍𝟏,…,𝒏

𝝍𝟏,…,𝒏
. . .
. . .

Product test (testing 𝐌𝐏𝐒(𝒓) with 𝒓 = 𝟏)
[Mintert, Kuś, Buchleitner]

[Harrow and Montanaro]



Product test (testing 𝐌𝐏𝐒(𝒓) with 𝒓 = 𝟏)

Product states pass this test 
with probability 𝟏

|𝝍⟩ = |𝝍𝟏⟩ ⊗⋯⊗ |𝝍𝒌⟩ ⊗⋯⊗ |𝝍𝒏⟩
|𝝍⟩ = |𝝍𝟏⟩ ⊗⋯⊗ |𝝍𝒌⟩ ⊗⋯⊗ |𝝍𝒏⟩

𝐏𝐫 𝐒𝐖𝐀𝐏	𝐭𝐞𝐬𝐭	𝐚𝐜𝐜𝐞𝐩𝐭𝐬	 𝝍𝒌
⊗𝟐 =

𝟏
𝟐
+
𝟏
𝟐

𝝍𝒌|𝝍𝒌
𝟐 = 𝟏

[HM13]:



[HM13]:

𝝍𝟏,…,𝒏

𝝍𝟏,…,𝒏

. . .

. . .

Why? 
Entangled |𝝍𝟏,…,𝒏⟩ means	some mixed subsystems with 𝐭𝐫 𝝆𝟐 < 1

𝐏𝐫 𝐒𝐖𝐀𝐏	𝐭𝐞𝐬𝐭	𝐚𝐜𝐜𝐞𝐩𝐭𝐬	𝝆⊗ 𝝆 =
𝟏
𝟐
+
𝟏
𝟐
𝐭𝐫 𝝆𝟐 < 1

Product test (testing 𝐌𝐏𝐒(𝒓) with 𝒓 = 𝟏)

Product states pass this test 
with probability 𝟏

States 𝜹-far from product fail this test  
with probability 𝛀(𝜹𝟐)



Product test (testing 𝐌𝐏𝐒(𝒓) with 𝒓 = 𝟏)

Product states pass this test 
with probability 𝟏

States 𝜹-far from product fail this test  
with probability 𝛀(𝜹𝟐)

Rejection probability can be boosted to 𝟐/𝟑
by repeating on 𝒎 = 𝑶 𝟏

𝜹𝟐
pairs 

[HM13]:



⋮

Prover 𝟏

Prover 𝟐

𝝍𝟏

𝝍𝟐

Prover 𝒌𝝍𝒌

Verifier

[HM13]:
Product test (testing 𝐌𝐏𝐒(𝒓) with 𝒓 = 𝟏)

Product states pass this test 
with probability 𝟏

States 𝜹-far from product fail this test  
with probability 𝛀(𝜹𝟐)

This implies 𝐐𝐌𝐀 𝒌 = 𝐐𝐌𝐀(𝟐) for 𝒌 ≥ 𝟐 [HM13]



[HM13]:
Product test (testing 𝐌𝐏𝐒(𝒓) with 𝒓 = 𝟏)

Product states pass this test 
with probability 𝟏

States 𝜹-far from product fail this test  
with probability 𝛀(𝜹𝟐)

This implies 𝐐𝐌𝐀 𝒌 = 𝐐𝐌𝐀(𝟐) for 𝒌 ≥ 𝟐 [HM13]

With applications in hardness of tensor optimization problems

Open problem of [HM13] and [MdW13]:

Can proof of product test be simplified and improved?



Result 1

Improved and simple analysis of
product test



Proof sketch of product test  

𝝍 . . .

|𝒂𝒊⟩ ∈ ℂ𝒅 |𝒃𝒊⟩ ∈ (ℂ𝒅)⊗𝒏o𝟏

Schmidt decomposition

|𝝍⟩ = 𝝀𝟏
� 	|𝒂𝟏⟩|𝒃𝟏⟩ + 𝝀𝟐

� 	|𝒂𝟐⟩|𝒃𝟐⟩ + ⋯+ 𝝀𝒅
� 	|𝒂𝒅⟩|𝒃𝒅⟩

𝝀𝟏 ≥ 𝝀𝟐 ≥ ⋯ ≥ 𝝀𝒅≥ 𝟎
𝝀𝟏 + 𝝀𝟐 +⋯𝝀𝒅 = 𝟏

|𝒂𝒊⟩ ∈ ℂ𝒅, |𝒃𝒊⟩ ∈ (ℂ𝒅)⊗𝒏o𝟏



Schmidt decomposition

|𝝍⟩ = 𝝀𝟏
� 	|𝒂𝟏⟩|𝒃𝟏⟩ + 𝝀𝟐

� 	|𝒂𝟐⟩|𝒃𝟐⟩ + ⋯+ 𝝀𝒅
� 	|𝒂𝒅⟩|𝒃𝒅⟩

𝝀𝟏 ≥ 𝝀𝟐 ≥ ⋯ ≥ 𝝀𝒅≥ 𝟎
𝝀𝟏 + 𝝀𝟐 +⋯𝝀𝒅 = 𝟏

Suppose |𝝍⟩ is far from product. 

If	𝝀𝟏 is small:
1st qudit is highly entangled with the rest

1st SWAP test rejects with good probability

|𝒂𝒊⟩ ∈ ℂ𝒅, |𝒃𝒊⟩ ∈ (ℂ𝒅)⊗𝒏o𝟏

Proof sketch of product test  

𝝍

. . .

. . .
𝝍



Schmidt decomposition 

|𝝍⟩ = 𝝀𝟏
� 	|𝒂𝟏⟩|𝒃𝟏⟩ + 𝝀𝟐

� 	|𝒂𝟐⟩|𝒃𝟐⟩ + ⋯+ 𝝀𝒅
� 	|𝒂𝒅⟩|𝒃𝒅⟩

𝝀𝟏 ≥ 𝝀𝟐 ≥ ⋯ ≥ 𝝀𝒅≥ 𝟎
𝝀𝟏 + 𝝀𝟐 +⋯𝝀𝒅 = 𝟏

Suppose |𝝍⟩ is far from product. 

If	𝝀𝟏 is large:
|𝝍⟩ ≈ 	 |𝒂𝟏⟩ ⊗ |𝒃𝟏⟩ and 1st SWAP test accepts 

But for |𝝍⟩ to be far from product 
|𝒃𝟏⟩ has to be far from product
Remaining SWAP tests reject with high prob.

(by induction)

|𝒂𝒊⟩ ∈ ℂ𝒅, |𝒃𝒊⟩ ∈ (ℂ𝒅)⊗𝒏o𝟏

Proof sketch of product test  



Schmidt decomposition 

|𝝍⟩ = 𝝀𝟏
� 	|𝒂𝟏⟩|𝒃𝟏⟩ + 𝝀𝟐

� 	|𝒂𝟐⟩|𝒃𝟐⟩ + ⋯+ 𝝀𝒅
� 	|𝒂𝒅⟩|𝒃𝒅⟩

𝝀𝟏 ≥ 𝝀𝟐 ≥ ⋯ ≥ 𝝀𝒅≥ 𝟎
𝝀𝟏 + 𝝀𝟐 +⋯𝝀𝒅 = 𝟏

Given |𝝍⟩ that is 𝜹-far from product states,

𝐏𝐫[Product test rejects |𝝍⟩⊗𝟐] ≥ 	z
𝜹𝟐 − 𝜹𝟒														𝜹 ≤ 𝟏/𝟐�

𝟐
𝟑
𝜹𝟐 − 𝟏

𝟑
𝜹𝟒									𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

Our bound in tight for 𝒏 ≥ 𝟐, 𝜹 ≤ 𝟏/𝟐� as shown by

|𝝍⟩ = 𝟏 − 𝜹𝟐� 	|𝟏⟩|𝟏⟩ + 𝜹	|𝟐⟩|𝟐⟩

|𝒂𝒊⟩ ∈ ℂ𝒅, |𝒃𝒊⟩ ∈ (ℂ𝒅)⊗𝒏o𝟏

Proof sketch of product test  



Result 2

Testing 𝐌𝐏𝐒(𝒓) with 𝒓 ≥ 𝟐
Upper bound and Lower bound



Testing 𝐌𝐏𝐒(𝒓) with 𝒓 ≥ 𝟐

Main ingredient is the rank tester of O’Donnell and Wright 

Tests if 𝐫𝐚𝐧𝐤 𝝆 ≤ 𝒓 or 𝝆 is 𝝐-far from rank- 𝒓 states
using 𝒎 = 𝚯 𝒓𝟐/𝝐 copies 

Uses generalized SWAP test called weak Schur sampling

Optimal test with perfect completeness and 𝐎(𝟏)	soundness

Can be performed with a quantum circuit 
of size 𝐩𝐨𝐥𝐲 𝒎, 𝐥𝐨𝐠	𝒅

[OW15]

[Krovi19], [Harrow05]



Testing 𝐌𝐏𝐒(𝒓) with 𝒓 ≥ 𝟐

Our MPS tester 

1) Simultaneously performs rank tester {𝜫�𝒓, 𝑰 − 𝜫�𝒓}
on qudits 𝟏,… , 𝑳 for each 𝟏 ≤ 𝑳 ≤ 𝒏

2) Rejects if any of the rank testers reject

. . .

. . .

...

...

...

...
|𝝍𝟏,…,𝒏⟩

|𝝍𝟏,…,𝒏⟩

𝒎
copies



Testing 𝐌𝐏𝐒(𝒓) with 𝒓 ≥ 𝟐

. . .

𝒎 copies
...

. . .

A B

Upper bound: Our MPS tester requires 𝒎 = 𝐎 𝒏𝒓𝟐/𝜹𝟐
Proof relies on

1)		∃Cut 𝑨,𝑩 where 𝝆𝑨 is 𝛀 𝜹𝟐/𝒏 -far from being rank 𝒓

⟹	Rank tester with 𝒎 = 𝐎 𝒏𝒓𝟐/𝜹𝟐 	detects this w.h.p

Rank tester rejects

|𝝍𝐀,𝐁⟩

|𝝍𝐀,𝐁⟩



Testing 𝐌𝐏𝐒(𝒓) with 𝒓 ≥ 𝟐
Upper bound: Our MPS tester requires 𝒎 = 𝐎 𝒏𝒓𝟐/𝜹𝟐
Proof relies on

1)		∃Cut 𝑨,𝑩 where 𝝆𝑨 is 𝛀 𝜹𝟐/𝒏 -far from being rank 𝒓

⟹	Rank tester with 𝒎 = 𝐎 𝒏𝒓𝟐/𝜹𝟐 	detects this w.h.p

2) The rank tester projectors mutually commute

𝝍𝟏,…,𝒏
. . .

. . .

...

...

...

...

𝝍𝟏,…,𝒏



Testing 𝐌𝐏𝐒(𝒓) with 𝒓 ≥ 𝟐

Can this analysis of be improved
to show 𝒎 = 𝑶(𝟏) copies are sufficient?

| ⟩+| ⟩+| ⟩𝒃𝒏 =
𝟏
𝒏 − 𝟏�

- The 𝒓 = 𝟐	MPS tester rejects 𝒃𝒏 ⊗𝟑 with probability ≥ 𝟏
𝟔

Can be done for the “bunny state”:

- 𝒃𝒏 ∈ 𝐌𝐏𝐒(𝟑) and 𝟏/𝟑� -far from 𝐌𝐏𝐒(𝟐)



Testing 𝐌𝐏𝐒(𝒓) with 𝒓 ≥ 𝟐

Can this analysis of be improved
to show 𝒎 = 𝑶(𝟏) copies are sufficient?

Can’t be done for general states!
Lower bound: 

Any MPS tester requires 𝒎 = 𝛀 𝒏� /𝜹𝟐

The hard example: 𝝍 and its random local rotations

. . .𝝍 = |𝝓⟩⊗𝒏/𝟐 =
|𝝓⟩ |𝝓⟩ |𝝓⟩

where	 𝝓 is 𝟏/ 𝒏� -far from 𝐌𝐏𝐒(𝒓)



Testing 𝐌𝐏𝐒(𝒓) with 𝒓 ≥ 𝟐

. . .

Lower bound: Any MPS tester requires 𝒎 = 𝛀 𝒏� /𝜹𝟐
Proof relies on

1) 𝐎𝐯𝐞𝐫𝐥𝐚𝐩𝒓 |𝝓⟩ = 𝝎 then 𝐎𝐯𝐞𝐫𝐥𝐚𝐩𝒓 |𝝓⟩⊗𝒏/𝟐 = 𝝎𝒏/𝟐

𝝎 ∼ 𝟏 − 𝟏/𝒏 then 𝐎𝐯𝐞𝐫𝐥𝐚𝐩𝒓 |𝝓⟩⊗𝒏/𝟐 ∼ 𝟏/𝟐

2) ∃|𝜸⟩ ∈ 𝐌𝐏𝐒(𝒓) such that unless 𝒎 = 𝛀( 𝒏� )

𝝍 = |𝝓⟩⊗𝒏/𝟐 =
|𝝓⟩ |𝝓⟩ |𝝓⟩

𝔼�,� 𝑼⊗ 𝑽 ⋅ |𝝓⟩⟨𝝓| ⋅ 𝑼�⊗ 𝑽�	 ⊗𝒎 ⊗𝒏/𝟐

𝔼�,� 𝑼⊗ 𝑽 ⋅ |𝜸⟩⟨𝜸| ⋅ 𝑼� ⊗ 𝑽�	 ⊗𝒎 ⊗𝒏/𝟐
≈

|𝝓⟩⟨𝝓|

|𝜸⟩⟨𝜸|



Summary

Developed algorithms for testing matrix product states

1) Simple and improved analysis of the product test

2) Upper bound of 𝑶(𝒏) for MPS testing with bond dim ≥ 𝟐

3) Lower bound of 𝛀( 𝒏� ) for MPS testing with bond dim ≥ 𝟐



Open questions

1) Optimal copy complexity of 𝐌𝐒𝐏(𝒓) testing for 𝒓 ≥ 𝟐

2) Testing more general entangled states e.g. tensor networks

3) Testing if a mixed quantum state is separable (unentangled)
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