Testing Matrix Product States

Mehdi Soleimanifar (MIT)

Joint work with John Wright (UC Berkeley)

arxiv: 2201.01824

Our work is about

Testing Entanglement in pure quantum states

State of 2 qudits

is a vector in tensor product space $\mathbb{C}^d \otimes \mathbb{C}^d$

$$\begin{aligned} |\psi\rangle &= \sum_{i_1,i_2=1}^d a_{i_1i_2} \cdot |i_1\rangle |i_2\rangle \\ a_{i_1i_2} &\in \mathbb{C}, \qquad \||\psi\rangle\|_2 = 1 \end{aligned}$$

 $|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$ Product state

State of 2 qudits

is a vector in tensor product space $\mathbb{C}^d \otimes \mathbb{C}^d$

$$\begin{aligned} |\psi\rangle &= \sum_{i_1,i_2=1}^d a_{i_1i_2} \cdot |i_1\rangle |i_2\rangle \\ a_{i_1i_2} &\in \mathbb{C}, \qquad \||\psi\rangle\|_2 = 1 \end{aligned}$$

 $|\psi\rangle \neq |\psi_1\rangle \otimes |\psi_2\rangle$ Entangled state

> ... d

State of *n* **qudits**

is a vector in tensor product space $(\mathbb{C}^d)^{\otimes n}$

$$\begin{aligned} |\psi\rangle &= \sum_{i_1,\dots,i_n=1}^d a_{i_1\dots i_n} |i_1\rangle \cdots |i_n\rangle \\ a_{i_1\dots i_n} &\in \mathbb{C} \quad \||\psi\rangle\|_2 = 1 \end{aligned}$$

Again state $|\psi\rangle$ can be product or entangled:

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \cdots \otimes |\psi_n\rangle$$

Product state

State of *n* **qudits**

is a vector in tensor product space $\left(\mathbb{C}^{d}\right)^{\otimes n}$

$$|\boldsymbol{\psi}\rangle = \sum_{i_1,\dots,i_n=1}^d a_{i_1\dots i_n} |i_1\rangle \cdots |i_n\rangle$$

$$a_{i_1\dots i_n} \in \mathbb{C} \quad \||\psi\rangle\|_2 = 1$$

Again state $|\psi\rangle$ can be product or entangled:

$$|\psi\rangle \neq |\psi_1\rangle \otimes |\psi_2\rangle \cdots \otimes |\psi_n\rangle$$

Entangled state

Questions we can ask:

Is a state $|\psi\rangle$ entangled or product?

How entangled is a state $|\psi\rangle$?

Long history in quantum information:

Bell test or quantum games Tensor optimization Quantum cryptography Hamiltonian complexity

Quantum many-body physics

This talk:

Statistical theory of many-body entanglement

Entanglement tester is an algorithm \mathcal{A} such that

1. If $|\psi\rangle$ has at most certain amount of entanglement

 $\Pr[\mathcal{A} \text{ accepts given } |\psi\rangle^{\otimes m}] \geq 2/3$ Completeness

2. If $|\psi\rangle$ is far from states with at most certain amount of entanglement

 $\Pr[\mathcal{A} \text{ accepts given } |\psi\rangle^{\otimes m}] \leq 1/3$ Soundness

What is the fewest number of copies *m* needed for entanglement testing?

One way to quantify many-body entanglement

$$|\psi\rangle = \sum_{i_1,i_2=1}^d \operatorname{tr}\left[A_i B_j\right] \cdot |i\rangle |j\rangle$$

 A_1, A_2, \dots, A_d B_1, B_2, \dots, B_d $r \times r$ complex matrices

Example:

 $\begin{aligned} |\psi\rangle &= \left(\sum_{i=1}^{d} a_{i} \cdot |i\rangle\right) \otimes \left(\sum_{j=1}^{d} b_{j} \cdot |j\rangle\right) \qquad a_{i}, b_{j} \in \mathbb{C} \\ |\psi\rangle \text{ is a product state} \\ A_{i} &= a_{i}, B_{j} = b_{j} \end{aligned}$ Bond dimension r = 1

$$|\psi\rangle = \sum_{i_1,i_2=1}^d \operatorname{tr}[A_i B_j] \cdot |i\rangle |j\rangle$$

 A_1, A_2, \dots, A_d B_1, B_2, \dots, B_d $r \times r$ complex matrices

Example:
$$|\psi\rangle = \frac{1}{\sqrt{2}} |1\rangle |1\rangle + \frac{1}{\sqrt{2}} |2\rangle |2\rangle$$

$$A_{1} = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 0 \end{bmatrix}, A_{2} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, A_{3} = 0, \dots, A_{d} = 0$$
$$B_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B_{2} = \begin{bmatrix} 0 & 0 \\ 0 & 1/\sqrt{2} \end{bmatrix}, B_{3} = 0, \dots, B_{d} = 0$$

Bond dimension r = 2

$$|\psi\rangle = \sum_{i_1,i_2=1}^d \operatorname{tr}[A_i B_j] \cdot |i\rangle |j\rangle$$

 A_1, A_2, \dots, A_d B_1, B_2, \dots, B_d $r \times r$ complex matrices

Example:
$$|\psi\rangle = \frac{1}{\sqrt{d}} |1\rangle |1\rangle + \dots + \frac{1}{\sqrt{d}} |d\rangle |d\rangle$$

Needs bond dimension r = d

If r = d, any state $|\psi\rangle$ can be written as an MPS

Bond dim limits the amount of entanglement

$$\begin{aligned} |\psi\rangle &= \sum_{i_1,\dots,i_n=1}^d \operatorname{tr} \left[A_{i_1}^{(1)} \cdots A_{i_n}^{(n)} \right] \cdot |i_1\rangle \cdots |i_n\rangle \\ & A_{1}^{(1)}, A_{2}^{(1)}, \dots, A_{d}^{(1)} \\ & A_{1}^{(2)}, A_{2}^{(2)}, \dots, A_{d}^{(2)} \\ & \vdots \\ & A_{1}^{(n)}, A_{2}^{(n)}, \dots, A_{d}^{(n)} \end{aligned} \quad r \times r \text{ complex matrices} \end{aligned}$$

If $r \sim d^n$, any state $|\psi\rangle$ can be written as an MPS Bond dim limits the amount of entanglement

Many states ψ of interest in physics are MPS of small bond dimension r

Alternative characterization of MPS

Another view of MPS(*r*) in terms of: Reduced state $\rho_{1,...,L} = \operatorname{tr}_{L+1,...,n} |\psi_{1,...,n}\rangle \langle \psi_{1,...,n}|$

Another view of MPS(*r*) in terms of: Reduced state $\rho_{1,...,L} = \operatorname{tr}_{L+1,...,n} |\psi_{1,...,n}\rangle \langle \psi_{1,...,n}|$

Let's go back to testing entanglement

Property testing model

MPS tester is an algorithm *A* such that

1. If $|\psi\rangle \in MPS(r)$ then $\Pr[\mathcal{A} \text{ accepts given } |\psi\rangle^{\otimes m}] \ge 2/3$ Completeness 2. If $\operatorname{Dist}_r(|\psi\rangle) \ge \delta$ then $\Pr[\mathcal{A} \text{ accepts given } |\psi\rangle^{\otimes m}] \le 1/3$ Soundness

What does it mean for $|\psi\rangle$ to be far from MPS(r)?

$$\operatorname{Overlap}_{r}(|\psi\rangle) = \max_{|\phi\rangle\in\operatorname{MPS}(r)} |\langle\psi|\phi\rangle|^{2}$$

$$\text{Dist}_{r}(|\psi\rangle) = \min_{|\phi\rangle\in\text{MPS}(r)} \mathbb{D}_{\text{trace}}(\psi,\phi) = \min_{|\phi\rangle\in\text{MPS}(r)} \sqrt{1 - |\langle\psi|\phi\rangle|^2}$$

 $\text{Dist}_r(|\psi\rangle) = \sqrt{1 - \text{Overlap}_r(|\psi\rangle)}$

Property testing model

MPS tester is an algorithm *A* such that 1. If $|\psi\rangle \in MPS(r)$ then $\Pr[\mathcal{A} \text{ accepts given } |\psi\rangle^{\otimes m}] \geq 2/3 \text{ Completeness}$ 2. If $\operatorname{Dist}_r(|\psi\rangle) \geq \delta$ then $\Pr[\mathcal{A} \text{ accepts given } |\psi\rangle^{\otimes m}] \leq 1/3$ Soundness

Goal: Finding the smallest number of copies *m*

for a given $\begin{cases} number of qudits n \\ bond dimension r \\ distance \delta \end{cases}$

MPS testing when r = 1(Product testing)

Product test (testing MPS(r) with r = 1)

- Accept if all SWAP tests accept

Product test (testing MPS(r) with r = 1) [HM13]: Product states pass this test

with probability 1

 $\begin{aligned} |\psi\rangle &= |\psi_1\rangle \otimes \cdots \otimes [\psi_k\rangle \otimes \cdots \otimes |\psi_n\rangle \\ |\psi\rangle &= |\psi_1\rangle \otimes \cdots \otimes [\psi_k\rangle \otimes \cdots \otimes |\psi_n\rangle \\ 1 \quad 1 \end{aligned}$

 $\Pr[\text{SWAP test accepts } |\psi_k\rangle^{\otimes 2}] = \frac{1}{2} + \frac{1}{2} |\langle \psi_k |\psi_k\rangle|^2 = 1$

Product test (testing MPS(r) with r = 1)[HM13]:Product states pass this test

with probability 1

States δ -far from product fail this test with probability $\Omega(\delta^2)$

Why? Entangled $|\psi_{1,...,n}\rangle$ means some mixed subsystems with $tr[\rho^2] < 1$ $Pr[SWAP test accepts \rho \otimes \rho] = \frac{1}{2} + \frac{1}{2}tr[\rho^2] < 1$

Product test (testing MPS(r) with r = 1)[HM13]:Product states pass this test

with probability 1

States δ -far from product fail this test with probability $\Omega(\delta^2)$

Rejection probability can be boosted to 2/3 by repeating on $m = O\left(\frac{1}{\delta^2}\right)$ pairs Product test (testing MPS(r) with r = 1)[HM13]:Product states pass this test

with probability 1

States δ -far from product fail this test with probability $\Omega(\delta^2)$

This implies QMA(k) = QMA(2) for $k \ge 2$ [HM13]

Product test (testing MPS(r) with r = 1) [HM13]: Product states pass this test with probability 1

States δ -far from product fail this test with probability $\Omega(\delta^2)$

This implies QMA(k) = QMA(2) for $k \ge 2$ [HM13]

With applications in hardness of tensor optimization problems

Open problem of [HM13] and [MdW13]:

Can proof of product test be simplified and improved?

Result 1

Improved and simple analysis of product test

Schmidt decomposition

$$egin{aligned} |\psi
angle &= \sqrt{\lambda_1} \, |a_1
angle |b_1
angle + \sqrt{\lambda_2} \, |a_2
angle |b_2
angle + \cdots + \sqrt{\lambda_d} \, |a_d
angle |b_d
angle \ \lambda_1 &\geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0 \ \lambda_1 + \lambda_2 + \cdots \lambda_d = 1 \end{aligned} \quad egin{aligned} |a_i
angle \in \mathbb{C}^d, |b_i
angle \in (\mathbb{C}^d)^{\otimes n-1} \ \end{pmatrix}$$

Schmidt decomposition

$$|\psi\rangle = \sqrt{\lambda_1} |a_1\rangle |b_1\rangle + \sqrt{\lambda_2} |a_2\rangle |b_2\rangle + \dots + \sqrt{\lambda_d} |a_d\rangle |b_d\rangle$$

 $\begin{array}{l}\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \geq 0\\\lambda_{1} + \lambda_{2} + \cdots \lambda_{d} = 1\end{array} \qquad |a_{i}\rangle \in \mathbb{C}^{d}, |b_{i}\rangle \in (\mathbb{C}^{d})^{\otimes n-1}\end{array}$

Suppose $|\psi\rangle$ is far from product.

If λ_1 is small:

1st qudit is highly entangled with the rest

1st SWAP test rejects with good probability

Schmidt decomposition

$$|\psi\rangle = \sqrt{\lambda_1} |a_1\rangle |b_1\rangle + \sqrt{\lambda_2} |a_2\rangle |b_2\rangle + \dots + \sqrt{\lambda_d} |a_d\rangle |b_d\rangle$$

 $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_d \ge 0$ $\lambda_1 + \lambda_2 + \cdots + \lambda_d = 1$ $|a_i\rangle \in \mathbb{C}^d, |b_i\rangle \in (\mathbb{C}^d)^{\otimes n-1}$

Suppose $|\psi\rangle$ is far from product.

If λ_1 is large: $|\psi\rangle \approx |a_1\rangle \otimes |b_1\rangle$ and 1st SWAP test accepts

But for $|\psi\rangle$ to be far from product

 $|b_1\rangle$ has to be far from product **Remaining SWAP tests reject** with high prob. (by induction)

Schmidt decomposition

$$egin{aligned} |\psi
angle &= \sqrt{\lambda_1} \, |a_1
angle |b_1
angle + \sqrt{\lambda_2} \, |a_2
angle |b_2
angle + \cdots + \sqrt{\lambda_d} \, |a_d
angle |b_d
angle \ \lambda_1 &\geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0 \ \lambda_1 + \lambda_2 + \cdots \lambda_d = 1 \end{aligned} \quad egin{aligned} |a_i
angle \in \mathbb{C}^d, |b_i
angle \in (\mathbb{C}^d)^{\otimes n-1} \ \end{pmatrix}$$

Given $|\psi\rangle$ that is δ -far from product states,

$$\Pr[\text{Product test rejects } |\psi\rangle^{\otimes 2}] \geq \begin{cases} \delta^2 - \delta^4 & \delta \leq \sqrt{1/2} \\ \frac{2}{3}\delta^2 - \frac{1}{3}\delta^4 & \text{otherwise} \end{cases}$$

Our bound in tight for $n \geq 2$, $\delta \leq \sqrt{1/2}$ as shown by

$$|\psi
angle = \sqrt{1-\delta^2} |1
angle |1
angle + \delta |2
angle |2
angle$$

Result 2

Testing MPS(r) with $r \ge 2$ Upper bound and Lower bound

Main ingredient is the rank tester of O'Donnell and Wright [OW15]

Tests if $rank(\rho) \le r$ or ρ is ϵ -far from rank-r states using $m = \Theta(r^2/\epsilon)$ copies

Uses generalized SWAP test called weak Schur sampling

Optimal test with perfect completeness and O(1) soundness

Can be performed with a quantum circuit of size $poly(m, \log d)$

[Krovi19], [Harrow05]

Our MPS tester

1) Simultaneously performs rank tester $\{\Pi_{\leq r}, I - \Pi_{\leq r}\}$ on qudits 1, ..., *L* for each $1 \leq L \leq n$

2) Rejects if any of the rank testers reject

Testing MPS(r) with $r \ge 2$ Upper bound: Our MPS tester requires $m = O(nr^2/\delta^2)$ Proof relies on

1) $\exists Cut(A, B)$ where ρ_A is $\Omega(\delta^2/n)$ -far from being rank r \Rightarrow *Rank tester with* $m = O(nr^2/\delta^2)$ detects this w.h.p

Rank tester rejects

Testing MPS(r) with $r \ge 2$ Upper bound: Our MPS tester requires $m = O(nr^2/\delta^2)$ Proof relies on

1) $\exists \operatorname{Cut}(A, B)$ where ρ_A is $\Omega(\delta^2/n)$ -far from being rank r

 \Rightarrow Rank tester with $m = O(nr^2/\delta^2)$ detects this w.h.p

2) The rank tester projectors mutually commute

Can this analysis of be improved to show m = O(1) copies are sufficient?

Can be done for the "bunny state":

$$|b_n
angle = rac{1}{\sqrt{n-1}} | \underbrace{\swarrow}_{n} \underbrace{\boxtimes}_{n} \underbrace{\swarrow}_{n} \underbrace{\boxtimes}_{n} \underbrace{\swarrow}_{n} \underbrace{\boxtimes}_{n} \underbrace{\boxtimes}_{$$

- $|b_n\rangle \in MPS(3)$ and $\sqrt{1/3}$ -far from MPS(2)
- The r = 2 MPS tester rejects $|b_n\rangle^{\otimes 3}$ with probability $\geq \frac{1}{6}$

Can this analysis of be improved to show m = O(1) copies are sufficient?

Can't be done for general states!

Lower bound:

Any MPS tester requires $m = \Omega(\sqrt{n}/\delta^2)$

The hard example: $|\psi\rangle$ and its random local rotations where $|\phi\rangle$ is $1/\sqrt{n}$ -far from MPS(r)

Lower bound: Any MPS tester requires $m = \Omega(\sqrt{n}/\delta^2)$ Proof relies on

1) **Overlap**_r($|\phi\rangle$) = ω then **Overlap**_r($|\phi\rangle^{\otimes n/2}$) = $\omega^{n/2}$

$$\omega \sim 1 - 1/n$$
 then $\operatorname{Overlap}_r(|\phi\rangle^{\otimes n/2}) \sim 1/2$

2) $\exists |\gamma\rangle \in MPS(r)$ such that unless $m = \Omega(\sqrt{n})$

$$\begin{split} & \left(\mathbb{E}_{U,V} \big(U \otimes V \cdot | \boldsymbol{\phi} \rangle \langle \boldsymbol{\phi} | \cdot U^{\dagger} \otimes V^{\dagger} \big)^{\otimes m} \big)^{\otimes n/2} \\ & \qquad \approx \left(\mathbb{E}_{U,V} \big(U \otimes V \cdot | \boldsymbol{\gamma} \rangle \langle \boldsymbol{\gamma} | \cdot U^{\dagger} \otimes V^{\dagger} \big)^{\otimes m} \big)^{\otimes n/2} \end{split}$$

Developed algorithms for testing matrix product states

- 1) Simple and improved analysis of the product test
- 2) Upper bound of O(n) for MPS testing with bond dim ≥ 2
- 3) Lower bound of $\Omega(\sqrt{n})$ for MPS testing with bond dim ≥ 2

- 1) Optimal copy complexity of MSP(r) testing for $r \ge 2$
- 2) Testing more general entangled states e.g. tensor networks
- 3) Testing if a mixed quantum state is separable (unentangled)

Testing Matrix Product States

Mehdi Soleimanifar (MIT)

Joint work with John Wright (UC Berkeley)

arxiv: 2201.01824