Testing Matrix Product States

Mehdi Soleimanifar (MIT)

Joint work with John Wright (UC Berkeley)

arxiv: 2201.01824

Our work is about

Testing Entanglement in pure quantum states

State of 2 qudits

is a vector in tensor product space \mathbb{C}^d ⊗ \mathbb{C}^d

$$
|\psi\rangle = \sum_{i_1, i_2=1}^d a_{i_1 i_2} \cdot |i_1\rangle |i_2\rangle
$$

$$
a_{i_1 i_2} \in \mathbb{C}, \qquad |||\psi\rangle||_2 = 1
$$

 $|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$ **Product state**

State of 2 qudits

is a vector in tensor product space \mathbb{C}^d ⊗ \mathbb{C}^d

$$
|\psi\rangle = \sum_{i_1, i_2=1}^d a_{i_1 i_2} \cdot |i_1\rangle |i_2\rangle
$$

$$
a_{i_1 i_2} \in \mathbb{C}, \qquad |||\psi\rangle||_2 = 1
$$

 $|\psi\rangle \neq |\psi_1\rangle \otimes |\psi_2\rangle$ **Entangled state**

. . .

State of *n* **qudits**

is a vector in tensor product space $(\mathbb{C}^d)^{\otimes n}$

$$
|\psi\rangle = \sum_{i_1,\dots,i_n=1}^d a_{i_1\dots i_n} |i_1\rangle \cdots |i_n\rangle
$$

$$
a_{i_1\ldots i_n}\in\mathbb{C} \quad \|\,|\psi\rangle\|_2=1
$$

Again state $|\psi\rangle$ can be product or entangled:

$$
|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \cdots \otimes |\psi_n\rangle
$$

Product state

. . .

State of *n* **qudits**

is a vector in tensor product space $(\mathbb{C}^d)^{\otimes n}$

$$
|\psi\rangle = \sum_{i_1,\dots,i_n=1}^d a_{i_1\dots i_n} |i_1\rangle \cdots |i_n\rangle
$$

$$
a_{i_1\ldots i_n}\in\mathbb{C} \quad \|\ket{\psi}\|_2=1
$$

Again state $|\psi\rangle$ can be product or entangled:

$$
|\psi\rangle \neq |\psi_1\rangle \otimes |\psi_2\rangle \cdots \otimes |\psi_n\rangle
$$

Entangled state

. . .

Questions we can ask:

Is a state $|\psi\rangle$ **entangled or product?**

How entangled is a state $|\psi\rangle$?

Long history in quantum information:

Bell test or quantum games Quantum cryptography Tensor optimization Example Framiltonian complexity

Quantum many-body physics

This talk:

Statistical theory of many-body entanglement

- **Entanglement tester is an algorithm A such that**
- **1. If** $|\psi\rangle$ **has at most certain amount of entanglement**

 $\Pr[\mathcal{A} \text{ accepts given } |\psi\rangle^{\otimes m}] \geq 2/3$ Completeness

2. If $|\psi\rangle$ **is far from states with at most certain amount of entanglement**

 $\Pr[\mathcal{A} \text{ accepts given } |\psi\rangle^{\otimes m}] \leq 1/3$ Soundness

What is the fewest number of copies needed for entanglement testing?

One way to quantify many-body entanglement

$$
|\psi\rangle = \sum_{i_1, i_2=1}^d \text{tr}[A_i \, B_j] \cdot |i\rangle |j\rangle
$$

 $A_1, A_2, ..., A_d$ $B_1, B_2, ..., B_d$ × **complex matrices**

Example:

 $|\psi\rangle = (\sum_{i=1}^d a_i \cdot |i\rangle) \otimes (\sum_{j=1}^d b_j \cdot |j\rangle)$ $a_i, b_j \in \mathbb{C}$ $|\psi\rangle$ is a product state $A_i = a_i$, $B_i = b_i$ **Bond dimension** $r = 1$

$$
|\psi\rangle = \sum_{i_1, i_2=1}^d \text{tr}[A_i \, B_j] \cdot |i\rangle |j\rangle
$$

 $A_1, A_2, ..., A_d$ $B_1, B_2, ..., B_d$ $r \times r$ complex matrices

Example:
$$
|\psi\rangle = \frac{1}{\sqrt{2}}|1\rangle|1\rangle + \frac{1}{\sqrt{2}}|2\rangle|2\rangle
$$

$$
A_1 = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, A_3 = 0, ..., A_d = 0
$$

$$
B_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1/\sqrt{2} \end{bmatrix}, B_3 = 0, ..., B_d = 0
$$

Bond dimension $r = 2$

$$
|\psi\rangle = \sum_{i_1, i_2=1}^d \text{tr}[A_i \, B_j] \cdot |i\rangle |j\rangle
$$

 $A_1, A_2, ..., A_d$ $B_1, B_2, ..., B_d$ × **complex matrices**

Example:
$$
|\psi\rangle = \frac{1}{\sqrt{d}}|1\rangle|1\rangle + \cdots + \frac{1}{\sqrt{d}}|d\rangle|d\rangle
$$

Needs bond dimension $r = d$

If $r = d$, any state $|\psi\rangle$ can be written as an MPS

Bond dim limits the amount of entanglement

$$
|\psi\rangle = \sum_{i_1,\dots,i_n=1}^d \text{tr}\left[A_{i_1}^{(1)} \cdots A_{i_n}^{(n)}\right] \cdot |i_1\rangle \cdots |i_n\rangle
$$

$$
A_1^{(1)}, A_2^{(1)}, \dots, A_d^{(1)}
$$

$$
A_1^{(2)}, A_2^{(2)}, \dots, A_d^{(2)}
$$

$$
A_1^{(n)}, A_2^{(n)}, \dots, A_d^{(n)}
$$

$$
r \times r \text{ complex matrices}
$$

If $r \sim d^n$, any state $|\psi\rangle$ can be written as an MPS *Bond dim limits the amount of entanglement*

> **Many states** ψ **of interest in physics are MPS of small bond dimension**

Alternative characterization of MPS

Reduced state $\rho_{1,...,L} = \text{tr}_{L+1,...,n} |\psi_{1,...,n}\rangle\langle \psi_{1,...,n}|$ Another view of $MPS(r)$ in terms of:

Reduced state $\rho_{1,...,L} = \text{tr}_{L+1,...,n} |\psi_{1,...,n}\rangle\langle \psi_{1,...,n}|$ Another view of $MPS(r)$ in terms of:

Let's go back to testing entanglement

Property testing model

MPS tester is an algorithm A such that 1. If $|\psi\rangle \in MPS(r)$ then $\Pr[\mathcal{A}\text{ accepts given } |\psi\rangle^{\otimes m}] \geq 2/3$ Completeness **2.** If $\text{Dist}_r(|\psi\rangle) \ge \delta$ then $\Pr[\mathcal{A} \text{ accepts given } |\psi\rangle^{\otimes m}] \leq 1/3$ Soundness

What does it mean for $|\psi\rangle$ **to be far from MPS(r)?**

$$
\text{Overlap}_r(|\psi\rangle) = \max_{|\phi\rangle \in \text{MPS}(r)} |\langle \psi | \phi \rangle|^2
$$

$$
Dist_r(|\psi\rangle) = \min_{|\phi\rangle \in MPS(r)} D_{trace}(\psi, \phi) = \min_{|\phi\rangle \in MPS(r)} \sqrt{1 - |\langle \psi | \phi \rangle|^2}
$$

 $Dist_r(\ket{\psi}) = \sqrt{1 - Overlap_r(\ket{\psi})}$

Property testing model

MPS tester is an algorithm A such that 1. If $|\psi\rangle \in MPS(r)$ then $\Pr[\mathcal{A}\text{ accepts given } |\psi\rangle^{\otimes m}] \geq 2/3$ Completeness **2.** If $\text{Dist}_r(|\psi\rangle) \ge \delta$ then $\Pr[\mathcal{A} \text{ accepts given } |\psi\rangle^{\otimes m}] \leq 1/3$ Soundness

Goal: Finding the smallest number of copies

for a given

number of qudits bond dimension distance

MPS testing when $r = 1$ **(Product testing)**

Product test (testing MPS (r) **with** $r = 1$ **)**

- Accept if all SWAP tests accept

Product test (testing MPS (r) **with** $r = 1$ **)** *Product states pass this test* **[HM13]:**

with probability

 $|\psi\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_k\rangle \otimes \cdots \otimes |\psi_n\rangle$ $|\psi\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_k\rangle \otimes \cdots \otimes |\psi_n\rangle$ $\Pr[\text{SWAP test accepts } |\psi_k\rangle^{\otimes 2}] =$ $\mathbf{1}$ $\frac{1}{2}$ + $\mathbf{1}$ $\frac{1}{2}|\langle\psi_k|\psi_k\rangle|^2=1$

[HM13]: Product test (testing MPS (r) **with** $r = 1$ **)** *Product states pass this test*

with probability

States *δ***-far from product fail this test** *with probability* $\Omega(\delta^2)$

Why? Entangled $|\psi_{1,...,n}\rangle$ means some mixed subsystems with $tr[\rho^2] < 1$ Pr[SWAP test accepts $\rho \otimes \rho$] = $\mathbf{1}$ $\frac{1}{2}$ + $\mathbf{1}$ $\frac{1}{2}\text{tr}[\rho^2]<1$

Product test (testing MPS (r) **with** $r = 1$ **)** *Product states pass this test* **[HM13]:**

> **States** *δ***-far from product fail this test** with probability $\Omega(\delta^2)$

with probability

Rejection probability can be boosted to 2/3 by repeating on $\bm{m} = \bm{O}\left(\frac{1}{\epsilon^2}\right)$ $\frac{1}{\delta^2}$) pairs

[HM13]: Product test (testing MPS (r) **with** $r = 1$ **)** *Product states pass this test*

with probability

States *δ***-far from product fail this test** *with probability* $\Omega(\delta^2)$

This implies $QMA(k) = QMA(2)$ for $k \ge 2$ [HM13]

[HM13]: Product test (testing MPS (r) **with** $r = 1$ **)** *Product states pass this test with probability*

> **States** *δ***-far from product fail this test** *with probability* $\Omega(\delta^2)$

This implies $QMA(k) = QMA(2)$ for $k \ge 2$ [HM13]

With applications in hardness of tensor optimization problems

Open problem of [HM13] and [MdW13]:

Can proof of product test be simplified and improved?

Result 1

Improved and simple analysis of product test

Schmidt decomposition

$$
|\psi\rangle = \sqrt{\lambda_1} |a_1\rangle |b_1\rangle + \sqrt{\lambda_2} |a_2\rangle |b_2\rangle + \dots + \sqrt{\lambda_d} |a_d\rangle |b_d\rangle
$$

$$
\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d \geq 0
$$

$$
|a_i\rangle \in \mathbb{C}^d, |b_i\rangle \in (\mathbb{C}^d)^{\otimes n-1}
$$

Schmidt decomposition

$$
|\psi\rangle = \sqrt{\lambda_1} |a_1\rangle |b_1\rangle + \sqrt{\lambda_2} |a_2\rangle |b_2\rangle + \dots + \sqrt{\lambda_d} |a_d\rangle |b_d\rangle
$$

 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0$ $\lambda_1 + \lambda_2 + \cdots \lambda_d = 1$ $|a_i\rangle \in \mathbb{C}^d$, $|b_i\rangle \in (\mathbb{C}^d)^{\otimes n-1}$

Suppose $|\psi\rangle$ **is far from product.**

If λ_1 is small:

1st qudit is highly entangled with the rest

1st SWAP test rejects with good probability

Schmidt decomposition

$$
|\psi\rangle = \sqrt{\lambda_1} |a_1\rangle |b_1\rangle + \sqrt{\lambda_2} |a_2\rangle |b_2\rangle + \dots + \sqrt{\lambda_d} |a_d\rangle |b_d\rangle
$$

 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0$ $\lambda_1 + \lambda_2 + \cdots \lambda_d = 1$ $|a_i\rangle \in \mathbb{C}^d$, $|b_i\rangle \in (\mathbb{C}^d)^{\otimes n-1}$

Suppose $|\psi\rangle$ **is far from product.**

If λ_1 is large: $|\psi\rangle \approx |a_1\rangle \otimes |b_1\rangle$ and 1st SWAP test accepts

But for $|\psi\rangle$ to be far from product

|⟩ *has to be far from product*

Remaining SWAP tests reject with high prob. (by induction)

Schmidt decomposition

$$
|\psi\rangle = \sqrt{\lambda_1} |a_1\rangle |b_1\rangle + \sqrt{\lambda_2} |a_2\rangle |b_2\rangle + \dots + \sqrt{\lambda_d} |a_d\rangle |b_d\rangle
$$

$$
\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_d \ge 0
$$

$$
\lambda_1 + \lambda_2 + \dots + \lambda_d = 1
$$

$$
|a_i\rangle \in \mathbb{C}^d, |b_i\rangle \in \mathbb{C}^d
$$

Given $|\psi\rangle$ that is δ -far from product states,

$$
\Pr[\text{Product test rejects } |\psi\rangle^{\otimes 2}] \geq \begin{cases} \delta^2 - \delta^4 & \delta \leq \sqrt{1/2} \\ \frac{2}{3}\delta^2 - \frac{1}{3}\delta^4 & \text{otherwise} \end{cases}
$$

Our bound in tight for $n \geq 2$, $\delta \leq \sqrt{1/2}$ as shown by

$$
|\psi\rangle = \sqrt{1-\delta^2} \, |1\rangle |1\rangle + \delta \, |2\rangle |2\rangle
$$

Result 2

Testing MPS (r) **with** $r \geq 2$ **Upper bound and Lower bound**

Main ingredient is the rank tester of O'Donnell and Wright [OW15]

Tests if $\text{rank}(\rho) \leq r$ **or** ρ **is** ϵ **-far from rank-** r states **using** $m = \Theta(r^2/\epsilon)$ copies

Uses generalized SWAP test called weak Schur sampling

Optimal test with perfect completeness and $O(1)$ soundness

Can be performed with a quantum circuit of size $\text{poly}(m, \log d)$

[Krovi19], [Harrow05]

Our MPS tester

1) Simultaneously performs rank tester $\{\Pi_{\leq r}, I - \Pi_{\leq r}\}$ on qudits $1, ..., L$ for each $1 \leq L \leq n$

2) Rejects if any of the rank testers reject

Testing MPS(r) with $r \geq 2$ **Upper bound: Our MPS tester requires** $m = O(nr^2/\delta^2)$ **Proof relies on**

1) ∃Cut (A, B) where ρ_A is $\Omega(\delta^2/n)$ -far from being rank r \Rightarrow *Rank tester with* $m = O(nr^2/\delta^2)$ detects this w.h.p

Rank tester rejects

Testing MPS(r) with $r \geq 2$ **Upper bound: Our MPS tester requires** $m = O(nr^2/\delta^2)$ **Proof relies on**

1) ∃Cut (A, B) where ρ_A is $\Omega(\delta^2/n)$ -far from being rank r

 \Rightarrow *Rank tester with* $m = O(nr^2/\delta^2)$ detects this w.h.p

2) The rank tester projectors mutually commute

Can this analysis of be improved to show $m = O(1)$ copies are sufficient?

Can be done for the "bunny state":

$$
|b_n\rangle = \frac{1}{\sqrt{n-1}}|\bigcup_{i=1}^n \mathbb{N} \otimes \mathbb{N} \otimes \mathbb{N} \otimes \mathbb{N} \big| + |\mathbb{N} \bigcup_{i=1}^n \mathbb{N} \otimes \mathbb{N} \big| + |\mathbb{N} \otimes \mathbb{N} \otimes \mathbb{N} \big| \big|
$$

- $-|b_n\rangle \in MPS(3)$ and $\sqrt{1/3}$ -far from MPS(2)
- The $\bm{r} = \bm{2}$ MPS tester rejects $|b_n\rangle^{\otimes 3}$ with probability $\geq \frac{1}{6}$ 6

Can this analysis of be improved to show $m = O(1)$ copies are sufficient?

Can't be done for general states!

Lower bound:

Any MPS tester requires $m = \Omega(\sqrt{n}/\delta^2)$

The hard example: $|\psi\rangle$ and its random local rotations where $\ket{\phi}$ is $1/\sqrt{n}$ -far from MPS (r)

Lower bound: Any MPS tester requires $m = \Omega(\sqrt{n}/\delta^2)$ **Proof relies on**

1) Overlap_r($|\phi\rangle$) = ω then Overlap_r($|\phi\rangle^{\otimes n/2}$) = $\omega^{n/2}$

$$
\omega \sim 1 - 1/n
$$
 then Overlap_r($|\phi\rangle^{\otimes n/2}$) ~ 1/2

2) $\exists | \gamma \rangle$ ∈ MPS(r) such that unless $m = \Omega(\sqrt{n})$

$$
\begin{aligned} \left(\mathbb{E}_{U,V} \big(U \otimes V \cdot |\boldsymbol{\phi}\rangle\langle \boldsymbol{\phi}| \cdot U^\dagger \otimes V^\dagger \,\big)^{\otimes m} \right)^{\otimes n/2} \\ \approx \Big(\mathbb{E}_{U,V} \big(U \otimes V \cdot |\boldsymbol{\gamma}\rangle\langle \boldsymbol{\gamma}| \cdot U^\dagger \otimes V^\dagger \,\big)^{\otimes m} \Big)^{\otimes n/2} \end{aligned}
$$

Developed algorithms for testing matrix product states

- **1) Simple and improved analysis of the product test**
- **2) Upper bound of** $O(n)$ for MPS testing with bond dim ≥ 2
- **3) Lower bound of** $\Omega(\sqrt{n})$ **for MPS testing with bond dim** ≥ 2
- **1) Optimal copy complexity of** $MSP(r)$ **testing for** $r \geq 2$
- **2) Testing more general entangled states e.g. tensor networks**
- **3) Testing if a mixed quantum state is separable (unentangled)**

Testing Matrix Product States

Mehdi Soleimanifar (MIT)

Joint work with John Wright (UC Berkeley)

arxiv: 2201.01824