From Communication Complexity to an Entanglement Spread Area Law

Mehdi Soleimanifar (MIT)

Joint work with Anurag Anshu (UC Berkeley) Aram Harrow (MIT)

Communication Complexity

Ground State Entanglement

Two-Outcome Measurement

 $C_{\epsilon}(\Omega_{AB})$ = Minimum # of exchanged qubits **to perform** *ε* **approximation of** $\{ |\Omega\rangle\langle\Omega|_{AB}, I - |\Omega\rangle\langle\Omega|_{AB} \}$

What property of $|\Omega\rangle_{AB}$ determines $C_{\varepsilon}(\Omega_{AB})$?

 $\mathsf{Testing}|0\rangle^{\otimes n}_A|0\rangle^{\otimes n}_B$

[AHL+14]

Testing n EPR pairs $\ket{\text{EPR}}_{AB}^{\otimes n}$

Using Quantum Expanders

$$
|\Omega\rangle_{AB} = \frac{1}{\sqrt{2}} (|00\rangle^{\otimes n} + |EPR\rangle^{\otimes n})
$$
\n
$$
(I - 2|\Omega\rangle\langle\Omega|_{AB})|00\rangle\langle00|^{\otimes n}
$$
\n
$$
\approx |EPR\rangle\langle EPR|^{\otimes n}
$$
\n
$$
\frac{1}{2^{n+1}}
$$
\nEXAMPLE 1

Recap

$$
\lambda_{k} \sqrt{\frac{1}{\sqrt{2}} (\vert 00\rangle^{\otimes n} + \vert \text{EPR}\rangle^{\otimes n})}
$$
\n
$$
\approx \frac{1}{2}
$$
\n
$$
\frac{1}{2^{n+1}}
$$
\n
$$
\frac{1}{1}
$$
\n
$$
r = 2^{n} k
$$

Entanglement Spread

[HW03] ES(
$$
\Omega_A
$$
) = log($r\lambda_1$) \approx log($\frac{\lambda_1}{\lambda_r}$)
 $\Omega_A = Tr_B |\Omega\rangle\langle\Omega|_{AB}$

 \boldsymbol{k} λ_k λ_1 1 and r $log(r\lambda_1)$

Entanglement Spread

[HW03] $ES(\Omega_A) = log(r\lambda_1) = log(r) - log(1/\lambda_1)$ $\Omega_A = Tr_R |\Omega\rangle\langle\Omega|_{AB}$ = $S_{max}(\Omega_A) - S_{min}(\Omega_A)$

−**Smooth Entanglement Spread**

$$
ES_{\varepsilon}(\Omega_A) = S_{\max}^{\varepsilon}(\Omega_A) - S_{\min}^{\varepsilon}(\Omega_A)
$$

−**Smooth Min/Max Entropies**

[HW03, CH19, HL11]

Holds even with EPR-assistance

Communication Complexity

Ground State Entanglement

Local Hamiltonians $H = \sum_{k \sim \ell} H_{k\ell}$

(Hamiltonian need not be 2-local)

This Talk: Gapped Ground States

Ground State
$$
|GS\rangle
$$

\n $e_0 = 0$

Gapped Ground States

- **Connected to central problems in physics (e.g. low T properties and novel phases of matter)**
- **Inherit locality of Hamiltonians**

Low-degree $poly(H) \approx |GS\rangle\langle GS|$ **[AKLV13]**

- **Exhibit exponential decay of correlations**

[Hastings04, HK05] $|\langle A \otimes B \rangle - \langle A \rangle \langle B \rangle| \le ||A|| \cdot ||B|| \cdot e^{-dist(A,B)/\xi}$ $\langle A \rangle = \text{Tr} [A \cdot GS]$

- *Short-range entanglement*

$A \qquad \qquad \partial A \qquad \qquad B$ **Ground State Entanglement** $|\text{GS}\rangle_{AB}=\sum_{\mathbf{k}}\sqrt{\lambda_{\mathbf{k}}}|\mathbf{k}\rangle_{A}|\mathbf{k}\rangle_{B}$ **Entanglement Entropy** $S(GS_A) = -\sum_k \lambda_k \log(\lambda_k)$ **[Hast07, ALV12, AKLV13] [AAG20, Abr19,…]** - **Progress in 2D and Trees** - Area Law in 1D $S(\mathrm{GS}_A) \le \widetilde{\boldsymbol{O}}\left(\frac{|\partial A|}{\mathrm{gap}}\right)$ *Used to find efficient MPS approximation*

Ground State Entanglement

 $|\text{GS}\rangle_{AB} = \sum_{k} \sqrt{\lambda_k} |k\rangle_A |k\rangle_B$ **Entanglement Entropy** $S(GS_A) = -\sum_k \lambda_k \log(\lambda_k)$

[Hast07, ALV12, AKLV13] [AAG20, Abr19,…] - **Progress in 2D and Trees [AHL+14]** - **Counter Example on General Graphs** - Area Law in 1D $S(\mathrm{GS}_A) \le \widetilde{\boldsymbol{O}}\left(\frac{|\partial A|}{\mathrm{gap}}\right)$ *Used to find efficient MPS approximation*

Other structural properties for ground state entanglement? $ES_{\varepsilon}(GS_{A}) = S_{\max}^{\varepsilon}(GS_{A}) - S_{\min}^{\varepsilon}(GS_{A})$

Our Result: Area law for Entanglement Spread on *any* **Graph**

$$
ES_{\varepsilon}(GS_A) \le \widetilde{O}\left(\frac{|\partial A|}{gap} \cdot \log \frac{1}{\varepsilon}\right) \longleftarrow \text{By designing atesting protocol}
$$

Testing Gapped Ground States

Measure energy $\langle \psi | H | \psi \rangle$

- **Yes:** $\langle \psi | H | \psi \rangle \le \text{gap}/2$
- $-$ No: $\langle \psi | H | \psi \rangle >$ gap/2

Quantum Phase Estimation

Repeat for $O(\log \frac{1}{2})$ $\frac{1}{\varepsilon}$) to get ε approximation

Testing Gapped Ground States

Communication Protocol

Alice and Bob jointly apply

$$
O\left(\frac{|\partial A|}{\text{gap}}\right)
$$
 communications for t = O(1/\text{gap})

Overall Communication Cost: $\widetilde{O}(|\partial A|/\text{gap}\cdot \log 1/\varepsilon)$

Hamiltonian Simulation (Performing $e^{itH_{AB}}$ **)**

Depth of Hamiltonian simulation algorithms is $O(t||H_{AB}||)$

Communication cost of $e^{itH_{AB}}$ is $O(t||H_{AB}||)$

How to improve this to $O(t||H_{\partial A}||)$ *?*

Hamiltonian Simulation (Performing $e^{itH_{AB}}$ **)**

 $e^{itH_{AB}} = e^{itH_A} \cdot e^{itH_B} \cdot e^{itH_{BA}}$ when H_A , H_B , H_{AA} Commute *Interaction Picture: Time-dependent Hamiltonian* **[LW18]** $H_I(t) = e^{-it(H_A+H_B)} \cdot H_{AA} \cdot e^{it(H_A+H_B)}$ $e^{itH_{AB}}= e^{itH_A}\cdot e^{itH_B}\cdot e^{\int_{\tau=0}^t iH_I(\tau)\,d\tau}$ $\tau = 0$

Communication Cost of $O(t||H_I||) = O(t||H_{\partial A}||)$

Time complexity of Alice and Bob doesn't matter so

Modify LCU [BCC+15] and use EPR-assistance to implement Taylor expansion of

Also used to share ancillary registers in QPE

Summary

Communication Complexity ≥ **Entanglement Spread**

> $\mathcal{C}_{\varepsilon}(\Omega_{AB}) \geq ES_{\varepsilon}(\Omega_A)$ $= S_{\text{max}}^{\varepsilon}(\Omega_{A}) - S_{\text{min}}^{\varepsilon}(\Omega_{A})$

Area law for Entanglement Spread on *any* **Graph**

$$
\mathrm{ES}_{\varepsilon}(\mathrm{GS}_{\mathrm{A}}) \le \widetilde{O}\left(\frac{|\partial A|}{\mathrm{gap}} \cdot \log \frac{1}{\varepsilon}\right)
$$

Improvement for Lattices

Gives evidence for Li-Haldane Conjecture [LH08] in physics

$$
GS_A \approx e^{-H_{\partial A}} \quad \text{Then} \quad ES(GS_A) = O\left(\sqrt{|\partial A|}\right)
$$

Improvement for Lattices

Sub-Area law for Entanglement Spread on *lattices* **(Tight)**

$$
\operatorname{ES}_{\varepsilon}(\operatorname{GS}_A) \le \widetilde{O}\left(\sqrt{\frac{|\partial A|}{\operatorname{gap}}}\cdot \log \frac{1}{\varepsilon}\right)
$$

Implication for Entropy Area Law

Gapped ground states always have small Entanglement Spread

 $S_{\text{max}}^{\varepsilon}(GS_A) - S_{\text{min}}^{\varepsilon}(GS_A)$

 $S_{\min}^{\varepsilon}(GS_{A})$ is small → Entropy Area Law

 $S_{\min}^{\varepsilon}(GS_{A})$ is large → Violated Entropy Area Law [AHL+14]

Open questions

[AAJ16], [CPSV11] 1) Efficient contraction of tensor network representation of gapped ground states from entanglement spread area law?

2) Other applications for our AGSP based on QPE and Hamiltonian simulation?

3) Other universal properties of gapped ground states?

From Communication Complexity to an Entanglement Spread Area Law

Mehdi Soleimanifar (MIT)

Joint work with Anurag Anshu (UC Berkeley) Aram Harrow (MIT)