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Communication Complexity



Alice

{ 𝛀 ⟨𝛀|𝑨𝑩, 𝑰 − 𝛀 ⟨𝛀|𝑨𝑩}

𝝍 𝑨𝑩

EPR Pairs

Testing Bipartite States

Bob

𝚽 𝑨𝑩

Two-Outcome Measurement

YES NO

𝑪𝜺 𝛀𝐀𝐁 = Minimum #	of exchanged qubits 
to perform 𝜺	approximation of { 𝛀 ⟨𝛀|𝑨𝑩, 𝑰 − 𝛀 ⟨𝛀|𝑨𝑩}



Alice

EPR Pairs

Testing Bipartite States

Bob

What property of 𝛀 𝑨𝑩 determines 𝑪𝜺(𝛀𝑨𝑩)?



Alice

EPR Pairs

Testing Bipartite States

𝛀 𝑨𝑩 = ∑ 𝝀𝒌
� 𝒌 𝑨 𝒌 𝑩

𝒓
𝒌;𝟏

Schmidt Form

𝝀𝟏 ≥ 𝝀𝟐 ≥ ⋯ ≥ 𝝀𝒓 > 𝟎	
𝝀𝟏 + 𝝀𝟐 +⋯+ 𝝀𝒓 = 𝟏

𝒌

𝝀𝟏

𝟏 𝒓

Bob

𝝀𝒌



Alice Bob

𝑘

𝝀𝟏 = 𝟏

Testing Bipartite States

𝝀𝒌

𝑪𝜺	 = 𝟏

𝒓 = 𝟏

Testing 𝟎 𝑨
⊗𝒏 𝟎 𝑩

⊗𝒏



Alice Bob

𝑘𝟏

Testing Bipartite States

𝝀𝒌

𝝀𝟏 =
𝟏
𝟐𝒏

𝒓 = 𝟐𝒏

𝑪𝜺 = 𝑶 𝐥𝐨𝐠 𝟏
𝜺

Testing 𝒏	EPR pairs 𝐄𝐏𝐑 𝑨𝑩
⊗𝒏

[AHL+14]

Using Quantum Expanders 



Alice Bob

𝑘

𝟏
𝟐𝒏M𝟏

𝟏 𝒓 = 𝟐𝒏

𝝀𝒌

𝑰 − 𝟐 𝛀 𝛀 𝑨𝑩 𝟎𝟎 ⟨𝟎𝟎|⊗𝒏

≈ |𝐄𝐏𝐑⟩⟨𝐄𝐏𝐑|⊗𝒏
≈
𝟏
𝟐

Testing Bipartite States

𝛀 𝑨𝑩 =
𝟏
𝟐�
( 𝟎𝟎 ⊗𝒏+ 𝐄𝐏𝐑 ⊗𝒏) 𝑪𝜺 = 𝚯Q(𝒏)



Recap

𝑘

𝝀𝟏 =
𝟏
𝟐𝒏

𝟏 𝒓 = 𝟐𝒏

𝝀𝒌

𝑪𝜺 = 𝑶 𝐥𝐨𝐠 𝟏
𝚫

𝑘𝟏 𝒓

𝝀𝟏 = 𝟏

𝝀𝒌

𝑪𝜺 = 𝟏

𝐄𝐏𝐑 𝑨𝑩
⊗𝒏 𝟎 𝑨

⊗𝒏 𝟎 𝑩
⊗𝒏

𝑘

𝟏
𝟐𝒏M𝟏

𝟏 𝒓 = 𝟐𝒏

𝝀𝒌

≈
𝟏
𝟐

𝑪𝜺 = 𝚯Q	(𝒏)

𝟏
𝟐�
( 𝟎𝟎 ⊗𝒏+ 𝐄𝐏𝐑 ⊗𝒏)



𝐄𝐒 𝛀𝑨 = 𝐥𝐨𝐠 𝒓𝝀𝟏 = 𝐥𝐨𝐠 𝒓 − 𝐥𝐨𝐠(𝟏/𝝀𝟏)	

Entanglement Spread 

𝒌

𝝀𝒌

𝝀𝟏

𝟏 𝒓

𝐥𝐨𝐠(𝒓𝝀𝟏)

[HW03]

𝛀𝑨 = 𝐓𝐫𝐁 𝛀 ⟨𝛀|𝑨𝑩

≈ 𝐥𝐨𝐠
𝝀𝟏
𝝀𝒓



𝐄𝐒 𝛀𝑨 = 𝐥𝐨𝐠 𝒓𝝀𝟏 = 𝐥𝐨𝐠 𝒓 − 𝐥𝐨𝐠(𝟏/𝝀𝟏)	

𝜺 −Smooth Entanglement Spread

Entanglement Spread 

𝐄𝐒𝜺 𝛀𝑨 = 𝑺𝐦𝐚𝐱𝜺 𝛀𝑨 − 𝑺𝐦𝐢𝐧𝜺 (𝛀𝑨)
𝜺 −Smooth Min/Max Entropies

𝑘

𝝀𝒌

[HW03]
𝛀𝑨 = 𝐓𝐫𝐁 𝛀 ⟨𝛀|𝑨𝑩 = 𝐒𝐦𝐚𝐱 𝛀𝑨 − 𝐒𝐦𝐢𝐧 𝛀𝑨



[HW03, CH19, HL11]

Communication Complexity ≥	Entanglement Spread 

𝑪𝜺 𝛀𝑨𝑩 ≥ 𝐄𝐒𝜺 𝛀𝑨 = 𝐒𝐦𝐚𝐱𝜺 𝛀𝑨 − 𝐒𝐦𝐢𝐧𝜺 (𝛀𝑨)

Alice Bob

EPR Pairs

Holds even with EPR-assistance



Ground State Entanglement 



This Talk: Gapped Ground States

Local Hamiltonians 𝑯 = ∑ 𝑯𝒌ℓ
�
𝒌~ℓ

𝑯𝒌ℓ

𝒆𝟎

𝒆𝟏

𝒆𝟐

…

Energy

𝒆𝒌

|𝐆𝐒〉

|𝒆𝟏〉

|𝒆𝟐〉

…

…|𝒆𝒌〉

…

gap

Ground State |𝐆𝐒⟩
𝒆𝟎 = 𝟎

(Hamiltonian need not be 2-local)



Gapped Ground States

[Hastings04, HK05]

𝑨⊗𝑩 − 𝑨 𝑩 ≤ 𝑨 ⋅ 𝑩 ⋅ 𝒆e𝐝𝐢𝐬𝐭(𝐀,𝐁)/𝝃	

- Short-range entanglement

- Connected to central problems in physics (e.g. low T
properties and novel phases of matter)

- Inherit locality of Hamiltonians

Low-degree 𝐩𝐨𝐥𝐲(𝐇) ≈ |𝐆𝐒⟩⟨𝐆𝐒|

- Exhibit exponential decay of correlations
𝑨 = 𝐓𝐫[𝑨 ⋅ 𝐆𝐒]

[AKLV13]



𝑨 𝑩𝝏𝑨

Ground State Entanglement

𝐆𝐒 𝑨𝑩 = ∑ 𝝀𝒌
� 𝒌 𝑨 𝒌 𝑩

�
𝒌

Entanglement Entropy 𝐒 𝐆𝐒𝑨 = −∑ 𝝀𝒌	𝐥𝐨𝐠(𝝀𝒌)�
𝒌

[Hast07, ALV12, AKLV13]

[AAG20, Abr19,…]

- Area Law in 1D 𝐒 𝐆𝐒𝑨 ≤ 𝑶Q 𝝏𝑨
𝐠𝐚𝐩

Used to find efficient MPS approximation 

- Progress in 2D and Trees
- Counter Example on General Graphs



𝑨 𝑩

𝝏𝑨 = 𝟏

Ground State Entanglement

𝐆𝐒 𝑨𝑩 = ∑ 𝝀𝒌
� 𝒌 𝑨 𝒌 𝑩

�
𝒌

Entanglement Entropy 𝐒 𝐆𝐒𝑨 = −∑ 𝝀𝒌	𝐥𝐨𝐠(𝝀𝒌)�
𝒌

[Hast07, ALV12, AKLV13]

[AAG20, Abr19,…]

[AHL+14]

- Area Law in 1D 𝐒 𝐆𝐒𝑨 ≤ 𝑶Q 𝝏𝑨
𝐠𝐚𝐩

Used to find efficient MPS approximation 

- Progress in 2D and Trees
- Counter Example on General Graphs

𝐒 𝐆𝐒𝑨 = 𝒏𝒄



Our Result: Area law for Entanglement Spread on any Graph

𝐄𝐒𝜺 𝐆𝐒𝑨 ≤ 𝑶Q
𝝏𝑨
𝐠𝐚𝐩

⋅ 𝐥𝐨𝐠
𝟏
𝜺

Other structural properties for ground state entanglement?
𝐄𝐒𝜺 𝐆𝐒𝑨 = 𝐒𝐦𝐚𝐱𝜺 𝐆𝐒𝑨 − 𝐒𝐦𝐢𝐧𝜺 (𝐆𝐒𝑨)

𝑨 𝑩𝝏𝑨

Ground State Entanglement

𝐆𝐒 𝑨𝑩 = ∑ 𝝀𝒌
� 𝒌 𝑨 𝒌 𝑩

�
𝒌

By designing a 
testing protocol



Testing Gapped Ground States

𝑯⊗𝒎

𝒆𝒊𝒕𝑯

𝑭𝑻v|𝟎𝒎⟩

|𝝍⟩

Measure energy 𝝍 𝑯 𝝍
- Yes: 𝝍 𝑯 𝝍 ≤ 𝐠𝐚𝐩/𝟐
- No:  𝝍 𝑯 𝝍 	> 𝐠𝐚𝐩/𝟐

Quantum Phase Estimation

≈𝜺 |𝐆𝐒⟩⟨𝐆𝐒|

Repeat for 𝑶 𝐥𝐨𝐠 𝟏
𝜺

to get 𝜺 approximation

𝒕 = 𝑶
𝟏
𝐠𝐚𝐩



Testing Gapped Ground States

𝑯⊗𝒎

𝒆𝒊𝒕𝑯

𝑭𝑻v|𝟎𝒎⟩

|𝝍⟩
𝑨lice 𝑩𝒐𝒃𝝏𝑨

Communication Protocol

𝐄𝐒𝚫 𝛀 ≤	Overall Communication Cost: 𝑶Q 𝝏𝑨 /𝐠𝐚𝐩 ⋅ 𝐥𝐨𝐠	𝟏/𝜺 	

Alice and Bob jointly apply 𝒆𝒊𝒕𝑯𝑨𝑩

𝑶 𝝏𝑨
𝐠𝐚𝐩

communications for 𝐭 = 𝐎(𝟏/𝐠𝐚𝐩)



Depth of Hamiltonian simulation algorithms is 𝑶 𝒕 𝑯𝑨𝑩

Communication cost of 	𝒆𝒊𝒕𝑯𝑨𝑩 is 𝑶 𝒕 𝑯𝑨𝑩

How to improve this to 𝑶 𝒕 𝑯𝝏𝑨 ?

Hamiltonian Simulation (Performing 𝒆𝒊𝒕𝑯𝑨𝑩)

𝑯𝑨𝑩 = 		𝑯𝑨 +			𝑯𝝏𝑨+			𝑯𝑩



𝒆𝒊𝒕𝑯𝑨𝑩 = 𝒆𝒊𝒕𝑯𝑨 ⋅ 𝒆𝒊𝒕𝑯𝑩⋅ 𝒆𝒊𝒕𝑯𝝏𝑨 when 𝑯𝑨,𝑯𝑩,𝑯𝝏𝑨 Commute

Interaction Picture: Time-dependent Hamiltonian
𝑯𝑰(𝒕) = 𝒆e𝒊𝒕(𝑯𝑨M𝑯𝑩) ⋅ 𝑯𝝏𝑨⋅ 𝒆𝒊𝒕(𝑯𝑨M𝑯𝑩)

𝒆𝒊𝒕𝑯𝑨𝑩 = 𝒆𝒊𝒕𝑯𝑨 ⋅ 𝒆𝒊𝒕𝑯𝑩⋅ 𝒆∫ 𝒊𝑯𝑰 𝝉 	𝐝𝝉
𝒕
𝝉|𝟎

Communication Cost of  𝑶 𝒕 𝑯𝑰 = 𝐎(𝒕 𝑯𝝏𝑨 )

[LW18]

Hamiltonian Simulation (Performing 𝒆𝒊𝒕𝑯𝑨𝑩)

𝑯𝑨𝑩 = 		𝑯𝑨 +			𝑯𝝏𝑨+			𝑯𝑩



Alice Bob

EPR Pairs

Time complexity of Alice and Bob doesn’t matter so

Modify LCU [BCC+15] and use EPR-assistance 
to implement Taylor expansion of 𝒆𝒊𝑯𝒕

Also used to share ancillary registers in QPE

Communication Complexity ≥	Entanglement Spread 

𝑪𝜺 𝐆𝐒𝑨𝑩 ≥ 𝐄𝐒𝜺 𝐆𝐒𝑨 = 𝐒𝐦𝐚𝐱𝜺 𝐆𝐒𝑨 − 𝐒𝐦𝐢𝐧𝜺 (𝐆𝐒𝑨)



Summary

Communication Complexity 
≥	Entanglement Spread 

𝑪𝜺 𝛀𝐀𝐁 ≥ 𝐄𝐒𝜺 𝛀𝐀
= 𝐒𝐦𝐚𝐱𝜺 𝛀𝐀 − 𝐒𝐦𝐢𝐧𝜺 𝛀𝐀

Alice Bob

EPR Pairs

𝑨 𝑩𝝏𝑨

Area law for Entanglement 
Spread on any Graph

𝐄𝐒𝜺 𝐆𝐒𝐀 ≤ 𝑶Q
𝝏𝑨
𝐠𝐚𝐩

⋅ 𝐥𝐨𝐠
𝟏
𝜺



Sub-Area law for Entanglement Spread on lattices (Tight) 

𝐄𝐒𝜺 𝐆𝐒𝑨 ≤ 𝑶Q 𝝏𝑨
𝐠𝐚𝐩

� ⋅ 𝐥𝐨𝐠 𝟏
𝜺

Gives evidence for Li-Haldane Conjecture [LH08] in physics

𝐆𝐒𝑨 ≈ 𝒆e𝑯𝝏𝑨 Then   𝐄𝐒(𝐆𝐒𝑨) = 𝑶 𝝏𝑨�

Improvement for Lattices



Improvement for Lattices

Gapped ground states always have small Entanglement Spread

𝐒𝐦𝐚𝐱𝜺 𝐆𝐒𝐀 − 𝐒𝐦𝐢𝐧𝜺 𝐆𝐒𝐀

𝐒𝐦𝐢𝐧𝜺 (𝐆𝐒𝐀) is small → Entropy Area Law

𝐒𝐦𝐢𝐧𝜺 (𝐆𝐒𝐀) is large → Violated Entropy Area Law [AHL+14]

Implication for Entropy Area Law

Sub-Area law for Entanglement Spread on lattices (Tight) 

𝐄𝐒𝜺 𝐆𝐒𝑨 ≤ 𝑶Q 𝝏𝑨
𝐠𝐚𝐩

� ⋅ 𝐥𝐨𝐠 𝟏
𝜺



Open questions

[AAJ16], [CPSV11] 

1) Efficient contraction of tensor network representation of 
gapped ground states from entanglement spread area law?  

2) Other applications for our AGSP based on QPE and 
Hamiltonian simulation? 

3) Other universal properties of gapped ground states?
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