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Goal: design an algorithm that

Input: H,p(, ¢

Output: estimate Z(B) such that
logZ(B) —log Z(B)| < ¢

Hardness depends on temperature
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Hardness of approximating Z ()
VS
Physical phase transition?
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good to understand
why physical phase transition happens
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Z(B) = Xy e FEr
Sum of strictly positive terms

No singularities for free energy
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Phase transition in classical Ising model by
changing the external magnetic field

« Extended to thermal phase transition by Fisher [F'65]
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The idea is to

Extrapolate

Taylor expanding log Z ()

Keeping first few terms of expansion

Need to make sure Taylor expansion converges
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* log Z(f) is analytic in zero free region

* llogZ(B)l = 0(m)

1 d?log Z(0 _
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1/poly(n)

K = O(logn) derivatives needed
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How to compute O(log n) derivatives of log Z(f) ?
Sufficient to find O(logn) derivative of Z(f3)

dk7(0)

55 o Tr[H¥]

H is sum of poly(n) many local terms
ZpOIY(n) H

So takes time n?°8™) to find all the derivatives
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Previous work

Introduced by Barvinok to compute permanent of
matrices [Bar'16]

Used in many new algorithms for old counting
problems [LSS’18, PR'16, EM’18,...]

Running times are usually quasi-polynomial

Algorithms are deterministic on the other hand
Compared to randomized ones based on sampling
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Extrapolating log Z(f)
* log Z(f) is analytic in zero free region

* llogZ(B)l = 0(n)

1 dflog Z(0 _
log Z(B) — Lo 7 oty —BY| < O(m) e ¥

where we start we want to know Z(B) here
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Proof:

How to show?

Zo41(B)] = ¢ |Zp(B)]

Cluster expansion: for |B| < B,,
e PH ~ ¥ product of H; 's

Zpi1(B) = Z,(B) + corrections

|corrections/Z;(B)| < 0(1)
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Decay of correlations vs phase transition

B

dist(A4, V

A

| Tr[ABp] — Tr[Ap]Tr[Bp]| < c e~ disUAB)/$
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Decay of correlations vs phase transition
Algorithmic implications?

« Classical spin systems [Weitz'99,...]

‘Mixing In time‘ = ‘Mixing Ip space‘
efficient sampling algorithm exponential decay of correlations

« (General Hamiltonians [BK'16]

Mixing in time — Mixing in space
+
Decay of quantum CMI
“Markov property”
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For translationally-invariant classical
system proved to be equivalent [DS’'85]

How about quantum systems?
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Result 3

We show absence of zeros near real axis implies
exponential decay of correlations

When

- H consists of commuting terms H = Y, H;, |H;, H;] =0
 General H on a one-dimensional chain

* For any quantum system if dist(4, B) = Q(logn)
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* Define a function that measures correlations btw A4, B

fp (A, B)
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We show

fp(A,B

small correlations

I

}

AB)=0atp=0
54, B) g + fp (A, B) analytic
dm

d,Bm fg(A,B) =0 form < O(dist(4, B))
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Result 4:

Decay of correlations at real temperature 3

Implies no zeros close to real axis at

* Proved for translationally-invariant classical systems
[DS’835]

* We can extend their proof for general classical
systems



Rough high level idea



Rough high level idea

Similar to Result 2

Zo41(B) Zy(B)

© o000 0 0 0 ®© 000 0 0 000
e 00000 0 0 © 0606000 0 0
o o o O o o o ©
o o o o
° o ° o o
o é- o o LI o o
O o‘\\o ® o0 0 0 L 0‘\\0 ® o0 0 0
o0 0000 0 0 EENEEEEX

\ \
new qudit added new qudit to be added



Rough high level idea
Similar to Result 2

Instead of cluster expansions use decay of correlations
Ze11(B) Zo(B)

© o000 0 0 0 ®© 000 0 0 000
e 00000 0 0 © 0606000 0 0
o o o O o o o ©
o o o o
° o ° o o
o é- o o LI o o
O o‘\\o ® o0 0 0 L 0‘\\0 ® o0 0 0
o0 0000 0 0 EENEEEEX

\ \
new qudit added new qudit to be added



Rough high level idea
Similar to Result 2

Instead of cluster expansions use decay of correlations

assume Z(f)
IS not zero here

- -



Rough high level idea
Similar to Result 2

Instead of cluster expansions use decay of correlations

assume Z(f) adding this does not
IS not zero here -->  make it zero

€ - /



Rough high level idea
Similar to Result 2

Instead of cluster expansions use decay of correlations

assume Z(f) adding this does not
IS not zero here -->  make it zero

€ - /



Rough high level idea

Similar to Result 2

Instead of cluster expansions use decay of correlations

assume Z(f) adding this does not
IS not zero here -->  make it zero

- - /7

+“—>

correlation length



Rough high level idea
Similar to Result 2

Instead of cluster expansions use decay of correlations

assume Z(f)
IS not zero here

* -

adding this does not
-»  make it zero

Decouple contribution of this region from the rest
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Ferromagnetic Heisenberg model

H=—%KjZiZj — % Jij(XiX; + VY;) —uX,JiZ;

Ki; = |l
Im(u)
Lee-Yang zeros on
Imaginary u End here Start here
[SF'71] ) !t
Hard -~ Easy,-
fu=0 4 Re(u)
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Previously, polynomial time algorithm for
ferromagnetic XY model [BG'17]

H = _Zl] bl]XlX] _Zl] Cl]YlY] _Zi diZi
bij = |cijl

l] —

Solved by reducing to counting perfect matchings
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Open questions

* Absence of zeros + decay of gCMI implies decay
of correlation for general H?

* Absence of zeros implies decay of qCMI?

* Aregime where quantum computer can’'t sample
but extrapolation works?

» Other applications for extrapolation (avoiding sign
problem, adiabatic algorithms,...)

 Other algorithms for Z(f) like convex relaxations?



Thanks!

I SEE YOU HAVE
CONSTRUCTED A
NEW LIGHT S5ABER.
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