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• Extended to thermal phase transition by Fisher [F’65]
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2) 
Im(β)

Re(β)( = 0

x : zeros of Z = Tr[/012]

zeros approaching the 
real axis as 3 → ∞

(6

Ground state
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Trivial

! = 0 ! = ∞
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Extrapolate

Taylor expanding log 𝑍(𝛽)

Keeping first few terms of expansion

Need to make sure Taylor expansion converges
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• log 𝑍(𝛽) is analytic in zero free region

• log 𝑍(𝛽) ≤ 𝑂(𝑛)

So log 𝑍(𝛽) − ∑ *
ℓ!
uℓ vwx 8())

uℓ;
𝛽ℓy

ℓz) ≤ 𝑂(𝑛)	𝑒:{	y

𝐾 = 𝑂(log 𝑛) derivatives needed

1/poly(𝑛)
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How to compute O(log n) derivatives of log 𝑍(𝛽) ?

Sufficient to find O(log n) derivative of 𝑍(𝛽)

𝑑,𝑍(0)
𝑑,𝛽

∝ Tr[𝐻,]

𝐻 is sum of poly(𝑛) many local terms 

𝐻 = ∑ 𝐻&
�wv�(M)
&z*

So takes time 𝑛h(vwx M) to find all the derivatives
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Previous work

• Introduced by Barvinok to compute permanent of 
matrices [Bar’16]

• Used in many new algorithms for old counting
problems [LSS’18, PR’16, EM’18,…]

• Running times are usually quasi-polynomial

• Algorithms are deterministic on the other hand 
Compared to randomized ones based on sampling
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𝑂(1)
𝛽 = 0

Im(β)

Re(β)𝛽 = 0 𝛽

where we start we want to know 𝑍 here

𝑂(1)

running time blows up

𝛽]

Why not go beyond the phase transition point?
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Proof:

How to show?
|𝑍ℓ�* 𝛽 | ≥ 𝑐:*	|𝑍ℓ 𝛽 |

Cluster expansion: for 𝛽 ≤ 𝛽),
𝑒:;E ≈ ∑product	of	𝐻&	′𝑠�

�

𝑍ℓ�* 𝛽 = 𝑍ℓ 𝛽 + corrections

corrections/𝑍& 𝛽 ≤ 𝑂(1)
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A

B



A

dist(𝐴, 𝐵)
B

	Tr 𝐴𝐵𝜌 − Tr 𝐴𝜌 Tr 𝐵𝜌 ≤ 𝑐	𝑒:����(�,�)/�
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Decay of correlations vs phase transition

Algorithmic implications?

• Classical spin systems [Weitz’99,…]

Mixing in time 									=									 Mixing in space

• General Hamiltonians [BK’16]

Mixing in time 								←									 Mixing in space
+ 

Decay of quantum CMI
“Markov property”

exponential decay of correlationsefficient sampling algorithm
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For translationally-invariant classical
system proved to be equivalent [DS’85]

How about quantum systems?
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We show absence of zeros near real axis implies 
exponential decay of correlations

When

• 𝐻 consists of commuting terms 	𝐻 = ∑ 𝐻&�
& , 𝐻&, 𝐻� = 0

• General 𝐻 on a one-dimensional chain
• For any quantum system if dist 𝐴, 𝐵 = Ω(log 𝑛)
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u�

u;�
	𝑓; 𝐴, 𝐵 = 0	 for 𝑚 < 𝑂(dist 𝐴, 𝐵 )

+ 𝑓;(𝐴, 𝐵) analytic 

small correlations

We show
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Result 4: 
decay implies zero

for classical systems
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Result 4:

Decay of correlations at real temperature 𝛽
implies no zeros close to real axis at 𝛽

• Proved for translationally-invariant classical systems 
[DS’85]

• We can extend their proof for general classical
systems
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Rough high level idea

Similar to Result 2

Instead of cluster expansions use decay of correlations

Decouple contribution of this region from the rest

assume 𝑍 𝛽
is not zero here 

adding this does not 
make it zero



Location of complex zeros of 𝑍(𝛽)

Decay of correlations

Algorithm
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𝐻 = −∑ 𝐾&�𝑍&𝑍� − ∑ 𝐽&� 𝑋&𝑋� + 𝑌&𝑌��
&� 	�

&� − 𝜇 ∑ 𝐽&𝑍&�
&

𝐾&� ≥ |𝐽&�|

Lee-Yang zeros on
imaginary 𝜇

[SF’71]

Im(𝜇)

Re(𝜇)𝜇 = 0
Hard Easy
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Previously, polynomial time algorithm for 
ferromagnetic XY model [BG’17]

𝐻 = −∑ 𝑏&�𝑋&𝑋� − ∑ 𝑐&�𝑌&𝑌��
&� 	�

&� − ∑ 𝑑&𝑍&�
&

𝑏&� ≥ |𝑐&�|

Solved by reducing to counting perfect matchings
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Open questions
• Absence of zeros + decay of qCMI implies decay 

of correlation for general 𝐻?

• Absence of zeros implies decay of qCMI?

• A regime where quantum computer can’t sample 
but extrapolation works?

• Other applications for extrapolation (avoiding sign 
problem, adiabatic algorithms,…) 

• Other algorithms for 𝑍 𝛽 like convex relaxations?



Thanks!

xkcd.com


