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Abstract

This thesis focuses on quantum information and quantum computing, and their applications in
studying quantum many-body systems. A remarkable interplay between computer science and
quantum physics in the past few decades has revealed that a precise control and manipulation of
interacting quantum systems enables us to process information and perform computations that go
beyond the reach of conventional digital computers. This novel form of information processing has
also resulted in a conceptually new toolkit for tackling fundamental questions about the physics
of quantum many-body systems. This thesis studies new features of interacting quantum systems
through the lens of computational complexity and information theory. We will see how using these
new features in turn allows us to develop efficient classical and quantum algorithms for learning,
testing, and simulating quantum many-body systems. Below are the main results of this thesis:

1. We develop an algorithm for reliably testing the amount of entanglement in a pure many-body
quantum state. This algorithm tests whether a quantum state is a matrix product state of
certain bond dimension in the property testing model. We provide both upper and lower
bounds on the number of identical copies of the quantum state required by this algorithm.

2. We prove that a quantum information quantity, known as the entanglement spread, satisfies
an area law in the ground state of any gapped local Hamiltonian with an arbitrary geometry.
This new feature of ground-state entanglement is obtained using a connection to the seemingly
different problem of finding the communication complexity of testing bipartite states.

3. We devise an algorithm for learning the local Hamiltonian that governs the interactions in
a quantum many-body system. This algorithm uses the results of local measurements on
the thermal state of the system, and provably only requires a number of samples that scales
polynomially with the number of particles.

4. A quasi-polynomial time algorithm is developed that estimates the quantum partition function
at temperatures above the phase transition point. We also study different characterizations
of the thermal phase transition by connecting the exponential decay of correlations to the
analyticity of the free energy in the high-temperature phase.

5. We rigorously bound the improvement that low-depth quantum circuits can provide over
methods based on product states in estimating the ground-state energy of local Hamiltonians.

Thesis Supervisor: Aram W. Harrow
Title: Associate Professor of Physics
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Chapter 1

Introduction

1.1 Experiment versus simulation and what goes wrong

Much of our modern understanding of the physics of microscopic phenomena is gained by studying
quantum many-body systems: a collection of interacting quantum particles which often exhibit
collective phenomena not present when only considering individual subsystems. In a conventional
experiment that explores the physics of these systems, a sample in the form of a crystal, thin film, or
polymer is grown. These compounds are then probed with various techniques such as spectroscopy
and microscopy techniques, each specialized in revealing certain aspects of the material such as
its magnetic, electric, and optical properties. Although these have resulted in vast achievements,
such experiments are also hampered by significant limitations: It is quite challenging to synthesize
quantum materials that host a particular form of interactions or exhibit a specific phase of matter,
and at the same time, be able to prob them with available experimental techniques which demand
specific traits in their input samples to accurately operate. Even when successfully implemented,
such experimental setups are only capable of revealing limited features of the systems under study,
leaving many of their aspects unexplored.

Some of these issues can be bypassed if instead of undertaking such experiments, we study
quantum many-body systems by simulating them on available digital computers. Such simulations
offer a versatile tool: Once an algorithm for simulating a target system is successfully implemented,
it is often not hard to adapt it for a variety of other systems with similar characteristics. It is also
possible to read off various features of the simulated system at once, obtaining a comprehensive
picture of the underlying physics. This approach, however, faces a substantial barrier of its own,
namely, the steep cost of simulating quantum systems on conventional computers. Rooted deeply in
the postulates of quantum mechanics, as we will see soon, such simulations of quantum many-body
systems are believed to generally require computational resources that scale exponentially with
the number of particles, a cost that quickly becomes prohibitive in practice. A host of heuristic
and approximate numerical methods have been devised to get around this restrictive complexity,
including density functional theory, Monte-Carlo sampling, dynamical mean-field theory, and tensor
networks. Nevertheless, accurately simulating many quantum systems of interest such as those
exhibiting the infamous sign-problem or involving highly correlated segments, as well as dynamical
aspects of such systems, still remains out of reach.
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1.2 A new fix: quantum computation

Some of the shortcomings of the current experimental and computational methods in studying
interacting quantum systems could potentially be overcome via a distinctive paradigm known as
quantum computing. This approach relies on the premise that it is possible to engineer scalable
multi-partite quantum systems (often an assembly of two-level systems known as quantum bits or
qubits) that admit a high level of control, remain coherent for long times, and can be readily ini-
tialized, evolved according to a desired set of interactions, and measured. Once practically realized,
such a highly adaptive quantum device can be programmed to perform a new model of computation
and information processing implied by the laws of quantum mechanics. Achieving this holds great
promises: We would have access to sophisticated measurement probes that allow us to gain detailed
information about a diverse set of properties of interacting quantum systems at the resolution of
individual constituent particles. The study of collective dynamics and non-equilibrium phenomena,
thermalization, and static properties at low and finite temperatures of a wider range of quantum
many-body systems than currently possible could become feasible.

Beyond providing an adaptable tool for simulating quantum physics, the quest for building
quantum computers has been part of a broader investigation of the connection between physics, in
particular quantum mechanics, and the nature of information and computation. The resulting theo-
retical framework provides a fresh perspective on many old problems and has led to the formulation
of new questions that seem difficult to come by with the traditional paradigms.

1.3 Challenges to address

To unlock the potential of quantum information science in studying quantum many-body physics,
certain challenges are yet to be addressed. These challenges, as we will see, cut across different
disciplines and to be successfully met, require adapting tools from computer science, information
theory, and mathematical physics. This thesis focuses on the theoretical questions that arise at this
interface, including:

1. Power of classical and quantum computers. What are the ultimate limits of classical
and quantum computers in simulating quantum many-body systems? Under what conditions
can quantum systems be simulated with modest computational resources and when is their
simulation computationally intractable? Can quantum computers achieve a provable compu-
tational advantage in simulating physically-relevant interacting quantum systems compared
to classical computers?

2. Statistical analysis of quantum data. In a future application of quantum computers, or
in a more limited form specialized quantum simulators, the state of some quantum many-
body system which may be in or out of equilibrium at low or finite temperatures could be
prepared. Given such many-body states, how do we actually probe a specific property of
interest or test the validity of a particular theoretical model? What is the best measurement
to perform? What is the optimal algorithm for analyzing the measurement data obtained in
such experiments?

3. Many-body physics through the lens of information processing. What new con-
straints can be imposed on the behavior of quantum many-body systems using a computational
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and information-theoretic perspective? How can the well-developed theories of randomness
and correlations in these fields be lifted to study the correlations that can arise from quantum
interactions and the inherent randomness in quantum mechanics? Can these tools lead to new
characterizations of different phases of matter and the transition between these phases?

1.4 Efficient versus intractable

Understanding the power of classical and quantum computers, dealing with the analysis of quantum
data, and other challenges mentioned in the previous sections are questions which are computational
in nature, and as such, we will apply theoretical frameworks developed in computer science to study
them.

To build an abstract model of the computational resources needed to solve quantum many-body
problems independent of the details of the platforms used, we consider the asymptotic performance
of the underlying algorithm. That is, instead of focusing on a particular quantum system with a
fixed set of interacting particles, we often study a general family of quantum many-body systems
and track the worst-case performance of the algorithm as the number of particles in such families
grow. There are different ways to characterize this performance, each being relevant in a particular
setup. Here, we will be mostly interested in the time, sample, and communication complexities as
overviewed in what follows.

Time complexity. The running time or time complexity is measured as the number of elementary
operations executed by the algorithm. In quantum computing, these operations take the form of a
series of local unitary gates applied on the input qubits as part of a quantum circuit. Algorithms with
running times which scale as a polynomial function of the number of particles are called polynomial-
time, or more colloquially, efficient algorithms. Problems that require running times that grow at
least exponentially with the number of particles are considered computationally intractable. Besides
the total number of local unitary gates in a quantum circuit—also known as the size of a quantum
circuit—we are often also interested in the minimum depth needed to implement an algorithm on
a quantum circuit. The circuit depth is defined as the maximum number of gates on any path that
connects an input qubit to an output qubit, and corresponds to the parallel running time of an
algorithm. As we will see, a limited depth is used to model the architecture of some of the quantum
computers that may be available in the near future.

Sample complexity. When dealing with statistical problems involving quantum states, we as-
sume multiple identical copies of the state are available and that a joint measurement can be
performed on these copies. The number of such copies is called the sample (or copy) complexity
which when scales polynomially with the number of particles, is another measure of efficiency that
we consider. The measurements performed on these copies may simply be a series of single-qubit
measurements possibly with a classical post-processing step, or more complicated multi-partite mea-
surements which are implemented on a quantum computer. In either case, the time complexity of
a statistical problem is considered as the running time of the algorithm involved.

Communication complexity. Finally, a measurement on a many-body quantum state may be
performed when the quantum state is distributed among various parties, each having access to a
subset of particles. Therefore, to collaboratively implement the measurement, the parties need to
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engage in a communication protocol by exchanging qubits. The total number of exchanged messages
is another proxy for the efficiency known as the communication complexity.

1.5 Pros and cons of complexity-theoretic modeling

Many computational problems that arise in the study of quantum many-body physics do not ob-
viously admit a tractable algorithmic solution. Aiming for efficient algorithms therefore provides
a guiding principle to uncover new structures present in these systems that allow us to avoid the
apparent computational intractability. Such features turn out to be deeply connected to problems
in physics and result in non-trivial insights. Examples of this are

1. The connection between the computational complexity of estimating quantum partition func-
tions and thermal phase transitions examined in Chapter 5,

2. The relation between the sample complexity of learning quantum interactions and the prop-
erties of the free energy described in Chapter 4,

3. The implications of the communication complexity of testing quantum states on the structure
of low-temperature many-body entanglement presented in Chapter 3.

Another advantage of evaluating the performance of algorithms in terms of time, sample, or com-
munication complexity is that it makes the problem amenable to a rigorous mathematical analysis.
For many problems, such a rigorous analysis remains an effective tool we have at our disposal since
there are still no functional large-scale quantum computers that allow us to practically test ideas
and benchmark some of the proposed algorithms. Even when practically feasible, having provable
error bounds on the estimated quantities or limits on the resources that may be needed remains
crucial.

There are also limitations to this complexity-theoretic approach. For one, the practical instances
of problems that we want to efficiently solve might not be the worst-case instances. This means
that in practice, the worst-complexity of a particular algorithm or a general intractability result
about a problem are overly pessimistic and ignore the helpful features that are generic, but not
universal. Some of the algorithms that we encounter in the next chapters, although efficient, are
not optimized to be practical, and the abstractions used in their formal analysis also neglect some
of the constraints that appear in different architectures for quantum computing.

1.6 What makes quantum mechanics hard?

Among the computational problems that are discussed in this thesis, some have close classical
analogs which are well-studied topics in computer science and statistical physics. However, there
are also purely quantum aspects to these questions, which render a direct extension of many of the
known classical techniques to the quantum setting impossible or very challenging. In the following,
we briefly review the challenges encountered in the quantum mechanical problems studied in the
later chapters.

Entanglement and an exponentially-large Hilbert space. The state of a quantum system
is described as a vector in a complex Hilbert space. The state space of multiple quantum systems is
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the tensor product of such Hilbert spaces. This tensor product structure brings about entanglement,
a rather counterintuitive feature of quantum mechanics. A bipartite quantum state is said to be
entangled if it cannot be simply factored into two states, each corresponding to one of the constituent
systems. Entanglement plays a multifaceted role in quantum many-body physics, ranging from
providing a crucial resource for achieving a computational advantage with quantum computers to the
characterization of new phases of matter with topological order. Obtaining a deeper understanding
of entanglement is a goal we pursue in Chapter 3, where we reveal a universal constraint that
many-body entanglement must satisfy in non-critical phases of interacting quantum systems, and in
Chapter 2 where we develop a statistical theory of testing the amount of entanglement in quantum
states.

One implication of the tensor product structure of the Hilbert space is that the number of bits
needed to accurately describe an entangled many-body quantum system can grow exponentially
with the number of particles, compared to the linear scaling for classical systems. To store and
manipulate many-body quantum states, classical computers need to cope with this exponential
complexity due to entanglement. This motivates studying the computational power of quantum
states which admit low-complexity descriptions that can be dealt with using classical computers.
This question is visited in Chapter 6 where we consider quantum states generated with low-depth
quantum circuits, and Chapter 2 and Chapter 3 where we examine matrix product states (MPS)
and projected entangled-pair states (PEPS), both examples of tensor network states which are
efficient representations of quantum states. Finally, another consequence of the exponentially-large
dimension of the Hilbert space is that even in the absence of entanglement, some of the problems
commonly encountered in quantum mechanics, such as finding the ground state or free energy of
many-body systems, may become computational intractable. We study conditions under which this
intractability can be avoided in Chapter 5 and Chapter 6.

Non-commuting interactions. Unlike classical interactions, in quantum many-body systems,
the interactions are described in terms of operators that do not necessarily commute with each other.
This is one of the biggest hurdles that we actively need to deal with in our analysis throughout this
thesis. For example, we will see in Chapter 4 and Chapter 5 how non-commutative interactions
cause certain classical constraints on the thermal correlations to be violated in the quantum case.
To get around this non-commutativity, various tools have been developed which are explained in
more detail in Section 1.7.

Destructive measurements. When learning or testing a property of quantum systems or finding
a classical description of quantum states, we need to perform a measurement. One crux of quantum
mechanics is that measurements can alter the state of the system and affect the outcome of future
measurements on the same state. This plus the fact that we often deal with a probabilistic mixture
of different quantum states involving additional sources of randomness—for instance due to thermal
interactions—means that we generally need many identical copies of a quantum state for a reliable
estimation of its properties. At the same time, one of our contradictory goals in statistical problems
is to reduce the number of such copies, given by the sample complexity. The resolution may involve
reusing some of the copies after they are measured, accepting some level of disturbance caused by
the measurements. Balancing this trade-off has been a topic of study in the past and also appears
as a major barrier in Chapter 2 and comes with a quick fix in Chapter 4.
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1.7 Locality and what makes quantum mechanics easy

One of the main ways we cope with the challenges presented in Section 1.6 is by relying on the
locality of the interactions. This allows us to either recover some of the structures found in the
classical setting or characterize new constraints on quantum systems that can be exploited in our
analysis.

The idea behind the locality assumption is that the set of interactions in quantum many-body
systems of interest can often be accurately modeled such that (𝑎) each interaction only involves a
few particles, (𝑏) each particle is only included in a few such interactions, and (𝑐) only particles
within a close spatial neighborhood interact with each other. Not all of these three conditions (𝑎)-
(𝑐) are strictly required for the results presented in this thesis. To distinguish between them, we
refer to interactions that are only required to satisfy condition (𝑎) local, those that satisfy (𝑎) and
(𝑏) bounded-degree local, and those that meet (𝑎),(𝑏), and (𝑐) geometrically local.

Most interactions that we naturally encounter in physics are geometrically local, which are also
the most-structured among local interactions (𝑎)-(𝑐) exhibiting features that we crucially use in
future chapters. Why do we also consider the more relaxed notions of bounded-degree or, more
generally, local interactions? One reason is that these interactions can be engineered in certain
experimental setups or simulated with quantum computers. Quantum many-body systems with local
and bounded-degree interactions also appear in modelling quantum chaos, investigating holographic
duality in connections to quantum gravity, studying disordered dynamics, and developing quantum
error correcting codes allowing coherent quantum computation.

Having introduced different notions of locality in interacting quantum systems, in what follows
we discuss some of its implications. Our objects of study are local Hamiltonians 𝐻 =

∑︀𝑚
𝑗=1 ℎ𝑗

where each Hermitian operator ℎ𝑗 describes one of the local interactions among particles. Each
local Hamiltonian has a series of eigenvalues 𝐸𝑗 and eigenvectors |𝐸𝑗⟩. We will be interested in both
dynamic and static (or equilibrium) properties of interacting quantum systems. When in thermal
equilibrium at an inverse temperature 𝛽, the system is in the energy eigenstate |𝐸𝑗⟩ with probability
proportional to 𝑒−𝛽𝐸𝑗 . This is more concisely given by the Gibbs (thermal) state 𝑒−𝛽𝐻/𝑍𝛽 where
𝑍𝛽 = tr(𝑒−𝛽𝐻) is the partition function of the system. The low-temperature properties are described
by the ground state which corresponds to the lowest energy eigenstate |𝐸0⟩ — here and in some later
introductory parts, we neglect the possible degeneracy of the lowest energy state. The dynamics
of interacting quantum systems are given by the time evolution operator 𝑒−𝑖𝑡𝐻 . We will now see
how these states and the time evolution of quantum systems are constrained by the locality of the
Hamiltonian.

Lieb-Robinson bound. Consider a collection of qubits (or finite-dimensional quantum particles)
that are initially in a product (unentangled) state. That is, there is no correlation between any pairs
of qubits. Suppose the state of one of the qubits (called 𝐴) is changed and the qubits are then left
to evolve in time according to the geometrically-local interactions among them. It turns out that
there is a finite speed at which the effect of changing the state of qubit 𝐴 is propagated to the other
qubits. This means at any time, there is a region around qubit 𝐴—called its effective lightcone—such
that measuring qubits outside this region, up to exponentially small corrections, does not reveal any
information about the initial change on qubit 𝐴. This behavior, known as the Lieb-Robinson bound,
has been first formalized in [LR72] and later improved in various works starting with [Has04, NS09].
Many of the tools we use in the next chapters (especially our results in Chapter 4) rely on the
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Lieb-Robinson bound or its variants.

Limited leakage to high-energy states. Suppose a quantum many-body system is in a super-
position of energy eigenstates with energy at most 𝐸. If we apply a transformation on the qubits
inside a region 𝐴, we can potentially create a superposition of different energy eigenstates, some
with energy greater than 𝐸. It is shown in [AKL16] that for bounded-degree interactions where
each qubit is involved in a constant number of interactions, up to exponentially small corrections,
all the eignestates that appear in the new state have energies bounded by 𝐸 +𝑂(|𝐴|). This state-
ment trivially holds in the classical setting where after flipping the state of |𝐴| classical spins, no
superposition is created and the new state is an eigenstate with energy at most 𝐸 + 𝑂(|𝐴|). We
will see a direct application of this bound in Chapter 4 where we study the variance of quasi-local
observables.

Cluster expansions. In thermal equilibrium and at an inverse temperature 𝛽, the partition func-
tion of a many-body system with a local Hamiltonian 𝐻 is given by 𝑍𝛽 = tr(𝑒−𝛽𝐻). When studying
the finite-temperature properties of interacting systems or evaluating many thermal properties of
interest such as the free energy, we need to deal with the partition function 𝑍𝛽(𝐻) and its logarithm
log𝑍𝛽(𝐻). Being a complicated mixture of different eigenstates of the Hamiltonian, in general, it
is quite challenging to theoretically investigate or computationally evaluate the features of parti-
tion functions. However, for geometrically-local Hamiltonians at high enough temperatures (which
often means when 𝛽 ≤ 𝛽0 for some constant inverse temperature 𝛽0 that depends on the geometric
details of the Hamiltonian), a powerful technique, known as the cluster expansion, can be used to
analyze quantum and classical partition functions. In cluster expansions, the partition function
𝑍𝛽(𝐻) is expanded into the trace of terms involving a sum of the product of local terms in the
Hamiltonian. This, for instance, lets us separate the contribution of the interaction terms acting
on a specific particle in the overall free energy (or log-partition function). Using cluster expansions,
we can rigorously show that at high temperatures, the correlations between distant observables in
the Gibbs state decay exponentially or that the free energy of the system is analytic. In Chap-
ter 5, we introduce and apply cluster expansions in connection to efficiently estimating quantum
partition functions.

Quantum belief propagation When studying the Gibbs state of interacting quantum systems,
we often need to know how a local change in the Hamiltonian affects the Gibbs state. In classical
interactions, if we consider a modified Hamiltonian 𝐻 + 𝑉 , the (unnormalized) Gibbs state 𝑒−𝛽𝐻

simply changes to 𝑒−𝛽𝐻𝑒−𝛽𝑉 or equivalently 𝑒−𝛽𝑉/2𝑒−𝛽𝐻𝑒−𝛽𝑉/2. It is shown in [Has07b, Kim12]
that for geometrically-local quantum interactions, a similar result holds if 𝑉 is additionally local.
That is, 𝑒−𝛽(𝐻+𝑉 ) = 𝜂𝑒−𝛽𝐻𝜂† where 𝜂 is a quasi-local operator, known as the quantum belief
propagation operator, which aside from exponentially decaying tails, acts on the same region as 𝑉
and has a similar norm as the operator 𝑒−𝛽𝑉/2. We will see various consequences of this in Chapter 4
and Chapter 5.

Low-degree ground-state projectors. At low temperatures, the state of a quantum many-body
system is given by the ground state which is the lowest energy eigenstate |𝐸0⟩ of the Hamiltonian.
A Hamiltonian 𝐻 is called gapped if there is a constant energy difference 𝛾 > 0 between the ground
state and the higher energy states. The ground state of a gapped local Hamiltonian inherits many
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local features from its Hamiltonian. To roughly see why, suppose the ground-state energy 𝐸0 = 0
and denote the maximum energy eigenvalue by ||𝐻||. Consider the operator 1−𝐻/||𝐻||. When acted
on energy eigenstates |𝐸𝑗⟩, this operator leaves the ground state |𝐸0⟩ unchanged, but shrinks the
remaining eigensates |𝐸𝑗⟩ with 𝑗 ≥ 1 by multiplying them with a factor ≤ 1− 𝛾/||𝐻||, which can be
amplified by further applications of 1−𝐻/||𝐻|| on the state. This implies that for a sufficiently large
𝑘, the operator 𝑝(𝐻) = (1−𝐻/||𝐻||)𝑘, which is a degree-𝑘 polynomial in terms of the local terms in
the Hamiltonian, is an approximate projector onto the ground state. While this provides a simple
polynomial approximation of the ground state, there are more sophisticated construction of 𝑝(𝐻)
that achieve improved properties with a substantially lower degree. Such low-degree approximate
ground-state projectors (AGSP) imply various local features in the ground state of gapped systems.
When the local Hamiltonian 𝐻 is on a 1D chain, AGSPs can be used to show that the entanglement
entropy of a region 𝐴 in the ground state 𝑆(𝐴) is upper bounded by the size of the boundary
|𝜕𝐴| rather than |𝐴| as in generic many-body quantum systems, and there are efficient classical
algorithms for finding the ground state in terms of matrix product states (MPS). These features are
the subject of our study in next chapters with a brief overview given in the next section.

1.8 Synopsis of this thesis

1.8.1 Testing and learning quantum many-body systems

The destructive nature of measurements in quantum mechanics along with the exponential com-
plexity of quantum systems and the presence of multipartite entanglement often complicates the
statistical analysis of the data that arise in quantum physics. Such data, for instance, may be
obtained when probing the intricate microscopic properties of quantum systems or when measuring
the output of quantum computers. Can we devise algorithms for learning and testing the properties
of quantum systems that consume modest computational resources and get around the apparent
hurdles posed by quantum mechanics? These efficient algorithms will be crucial for validating the
performance of upcoming quantum devices and examining the outcome of future quantum exper-
iments that access the high-complexity regime of quantum mechanics. This thesis brings tools
from statistical learning theory and combines them with new structural results about quantum
many-body systems to develop such provably efficient algorithms.
A statistical theory of testing entanglement. Entanglement is a crucial resource for quantum
computing and quantum information processing, and its study has shed light on various phases of
matter and quantum many-body phenomena. Starting with the widely-known Bell test, different
schemes have been considered for testing the amount of entanglement in a quantum state with
applications ranging from benchmarking quantum devices to quantum cryptography. Here, we
study this question from the statistical viewpoint. We devise an algorithm that when provided with
multiple copies of a quantum state, correctly decides with high probability whether the amount of
entanglement in that state is bounded by a certain value or not. Our main objective in Chapter 2
is to determine:

What is the fewest number of copies of a many-body quantum state needed
for reliably testing the amount of entanglement it possesses?

In order to measure the amount of entanglement in a quantum state, we use matrix product states.
A quantum state comprised of 𝑛 qudits is said to be a matrix product state of bond dimension 𝑟
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if the reduced density matrix 𝜓1,...,𝑘 has rank 𝑟 for each 𝑘 ∈ {1, . . . , 𝑛}. We denote the family of
such states with MPS(𝑟). The bond dimension 𝑟 limits the amount of entanglement in the state:
Matrix product states with 𝑟 = 1 correspond to the set of product states with no entanglement, and
as 𝑟 grows, MPS(𝑟) includes more quantum states. Matrix product states of small bond dimension
are known to well approximate some physically-relevant quantum states such as those related to
interacting quantum systems with a 1D geometry.

Using matrix product states as a way to quantify many-body entanglement, our entanglement
tester checks if a quantum state is in MPS(𝑟) or if it is far from states in MPS(𝑟). In the case of
𝑟 = 1, i.e. testing if a state is a product state, our results give a simple and improved analysis of
“the product test,” previously studied by [HM13]. Besides its relevance in the statistical analysis
of quantum data, the product testing is known to be related to the computational hardness of
various problems both in and out of quantum information theory related to entanglement and
tensor optimization. For the case of 𝑟 ≥ 2, we give an efficient algorithm for testing whether |𝜓⟩
is an MPS of bond dimension 𝑟 using 𝑚 = 𝑂(𝑛𝑟2) copies, independent of the dimensions of the
qudits, and we show that Ω(𝑛1/2) copies are necessary for this task. This chapter is based on:

[SW22] Mehdi Soleimanifar and John Wright. Testing matrix product states. In Proceedings of the
2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1679–1701, 2022.

Testing bipartite states and structure of ground states entanglement. As mentioned in
Section 1.7, the ground state of gapped local Hamiltonians inherits the locality of the Hamiltonian. A
long-known manifestation of locality in these states is the decay of correlations; That is, correlations
between two subsystems decay exponentially in their distance which is measured according to the
geometry induced by the Hamiltonian. Another intriguing yet much more challenging problem
has been to uncover local features that bipartite entanglement exhibits in the ground state of
such systems. This problem has been the focus of many previous studies resulting in a number
of prominent conjectures, in particular, the entanglement entropy “area law” which states that
the entropy of a region grows proportional to the size of its boundary. Previous works have also
investigated the information available in the ground-state entanglement beyond what can be inferred
from entanglement entropy, predicting that the entanglement spectrum can be described in terms
of the spectrum of a boundary (modular) Hamiltonian in one fewer dimension. These conjectures
have yet to be rigorously established for general geometries. For instance, the entanglement entropy
area law is proven for 1-D systems, for 2-D systems subject to an additional assumption (being
“frustration-free”), and is known to fail for general geometries. In Chapter 3 we ask:

What are the features of the ground-state entanglement in gapped local Hamiltonians
that provably hold for arbitrary geometries?

Our work addresses this question by connecting it to a seemingly unrelated topic: the communi-
cation complexity of testing bipartite entangled states. To explain this connection, suppose Alice
and Bob want to test if a bipartite state shared between them is a target state |𝜓⟩𝐴𝐵 or not. The
communication complexity of this protocol (i.e. the minimum number of qubits the parties need to
exchange) can be shown to be related to a feature of the target state |𝜓⟩𝐴𝐵 known as “entanglement
spread.” This quantum information quantity measures the difference between the Rényi entangle-
ment entropies and in a sense is a measure of how far a state is from both maximally entangled and
product states. We then develop a new communication protocol for the case that the target state
|𝜓⟩𝐴𝐵 is the unique ground state of a gapped local Hamiltonian. By analyzing the communication
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complexity of this protocol, we establish an area law for entanglement spread. This result is not
restricted to low-dimensional lattices and holds for any gapped local Hamiltonian with a general
geometry. For the special case of lattices, we improve our bound on the entanglement spread to
a sub-area law scaling. We also show how this feature has interesting algorithmic implications
and connects to other conjectures regarding the locality of modular Hamiltonians. This chapter is
based on:

[AHS20] Anurag Anshu, Aram W Harrow, and Mehdi Soleimanifar. From communication com-
plexity to an entanglement spread area law in the ground state of gapped local Hamiltonians.
To appear in Nature Physics. Preprint available at arXiv:2004.15009, 2020.

Learning quantum interactions. The interactions among particles in a quantum system are
described by the Hamiltonian. Learning the Hamiltonian from measurement data is an impor-
tant task in experiments that probe quantum many-body physics and the verification of quantum
technologies. The main question we study in Chapter 4 is:

How can we devise a quantum Hamiltonian learning algorithm
with efficient performance guarantees?

The classical analog of this problem, known as learning Boltzmann machines, is a well-studied prob-
lem in machine learning which admits efficient algorithms and corresponds to learning the Hamil-
tonian of the classical Ising model and its generalizations. For the case of quantum interactions,
although there have been various proposals for learning quantum Hamiltonians, their performance
either has not been rigorously analyzed or they require a number of measurements that scales ex-
ponentially with the number of particles. This lack of efficient algorithms for quantum Hamiltonian
learning is not a mere technicality and points to a fundamental distinction between quantum and
classical interactions: At finite temperatures, quantum systems can violate the Markov property, a
feature that allows for machine learning techniques to be successfully applied to inferring classical
systems such as Ising models. We introduce several new ideas to obtain an unconditional result that
avoids relying on the Markov property of quantum systems. The key to our findings is proving that
the absolute value of the finite-temperature free energy of quantum many-body systems is strongly
convex with respect to the interaction coefficients. Using this, we prove that only a polynomial
number of simple local measurements on the thermal state of a quantum system are necessary and
sufficient for accurately learning its Hamiltonian. This chapter is based on:

[AAKS21] Anurag Anshu, Srinivasan Arunachalam, Tomotaka Kuwahara, and Mehdi Soleimanifar.
Sample-efficient learning of interacting quantum systems. Nature Physics, 17(8):931–935,
2021. Also in Proceedings of IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 685–691, 2020.

1.8.2 Simulating quantum many-body systems

The exponential complexity of quantum many-body systems limits our ability to simulate their
properties from first principles of quantum mechanics. One way to sidestep this difficulty is to
intelligently exploit the special features that certain families of quantum systems exhibit. An integral
part of this thesis is finding such properties. Chapter 5 studies the roles of entanglement and thermal
phase transitions in the computational hardness of simulating quantum systems. In Chapter 6, we
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investigate the extent to which quantum computers can be useful for simulating the low-temperature
properties of quantum many-body systems.
Thermal phase transition and computational complexity. As the temperature of quantum
many-body systems is lowered, we see a transition in the computational hardness of estimating their
thermal properties, changing from trivial at infinite temperatures to computationally intractable at
very low temperatures. But we also know that lowering the temperature causes the phase of the
system to undergo a sharp transition at a critical temperature. There are two seemingly different
characterizations for the high-temperature phase residing above this critical point. One is that
the correlations between two observables decay exponentially with their distance. The other is the
analyticity of the free energy of the system, equivalently given by the absence of complex zeros of
the partition function near real temperatures. In Chapter 5 we study:

How are the different characterizations of the thermal phase transition related
to the computational complexity of estimating the finite-temperature properties?

We show that the thermal transition in the phase of a quantum many-body system can be accom-
panied by a transition in the computational hardness of approximating its properties. More precisely,
we show that at temperatures above the thermal phase transition point, there is a (quasi)polynomial-
time algorithm for estimating quantum partition functions. The same problem is known to be com-
putationally intractable (NP-hard) in the worst case below the phase transition point. We establish
this result using the characterization of thermal phase transitions in terms of the complex zeros of
the partition function. This allows us to estimate the free energy using convergent Taylor expansions
which can be efficiently computed, resulting in our algorithm. Building on [DS85], we also study the
connection between the complex zeros of quantum partition functions and the exponential decay
of correlations in quantum systems. We prove that at temperatures above the phase transition
point, where the complex zeros of the partition function are far from the real temperature axis,
the correlations between two observables with sufficiently large distance decay exponentially. This
chapter is based on:

[HMS20] Aram W. Harrow, Saeed Mehraban, and Mehdi Soleimanifar. Classical algorithms, cor-
relation decay, and complex zeros of partition functions of quantum many-body systems. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pages 378–386, 2020.

Power of near-term quantum computers. While it is known that quantum computers can
efficiently simulate the dynamics of quantum many-body systems, the extent to which they are
useful for simulating the equilibrium (or static) properties, especially at very low temperatures, is
not well understood. Many of the known classical techniques for this purpose—most famously, those
based on mean-field approximations—only produce product (unentangled) states. Given that the
ground state of quantum systems may be highly entangled, it is natural to ask what advantage can
quantum computers provide for estimating the low-temperature properties of quantum systems. Due
to the fragile nature of quantum computers, their applications in the near future will be restricted to
algorithms that can be run on small quantum computers with low-depth (shallow) circuits. Hence,
we ask:

How much improvement can low-depth quantum circuits provide
over methods based on product states in quantum simulations?

23



We prove that shallow quantum circuits can providing an extensive improvement in estimating
the ground state energy upon product state approximations. More formally, we consider bounded-
degree local Hamiltonians 𝐻 involving 𝑚 local terms where each qubit participates in at most 𝑑
interactions. Given any product state |𝑣⟩ with mean energy 𝑒0 = ⟨𝑣|𝐻|𝑣⟩ and energy variance
Var𝑣(𝐻) = ⟨𝑣|(𝐻−𝑒0)2|𝑣⟩, we design a low-depth quantum circuit that when acted on |𝑣⟩ improves
its energy by an amount at least proportional to Var𝑣(𝐻)2/(𝑑2𝑚). For typical product states |𝑣⟩
this translates into an extensive energy improvement proportional to 𝑛, the number of qubits. This
chapter is based on:

[AGMKS21] Anurag Anshu, David Gosset, Karen J. Morenz Korol, and Mehdi Soleimanifar. Im-
proved approximation algorithms for bounded-degree local Hamiltonians. Phys. Rev. Lett.,
127:250502, Dec 2021
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Chapter 2

Testing matrix product states

Chapter summary: Matrix product states (MPS) are a class of physically-relevant quantum
states which arise in the study of quantum many-body systems. A quantum state |𝜓1,...,𝑛⟩ ∈
C𝑑1 ⊗ · · · ⊗ C𝑑𝑛 comprised of 𝑛 qudits is said to be an MPS of bond dimension 𝑟 if the reduced
density matrix 𝜓1,...,𝑘 has rank 𝑟 for each 𝑘 ∈ {1, . . . , 𝑛}. When 𝑟 = 1, this corresponds to the
set of product states, i.e. states of the form |𝜓1⟩ ⊗ · · · ⊗ |𝜓𝑛⟩, which possess no entanglement. For
larger values of 𝑟, this yields a more expressive class of quantum states, which are allowed to possess
limited amounts of entanglement.

Devising schemes for testing the amount of entanglement in quantum systems has played a
crucial role in quantum computing and information theory. In this chapter, we study the problem
of testing whether an unknown state |𝜓⟩ is an MPS in the property testing model. In this model,
one is given 𝑚 identical copies of |𝜓⟩, and the goal is to determine whether |𝜓⟩ is an MPS of bond
dimension 𝑟 or whether |𝜓⟩ is far from all such states. For the case of product states, we study the
product test, a simple two-copy test previously analyzed by Harrow and Montanaro [HM13], and a
key ingredient in their proof that QMA(2) = QMA(𝑘) for 𝑘 ≥ 2. We give a new and simpler analysis
of the product test which achieves an optimal bound for a wide range of parameters, answering
open problems in [HM13] and [MdW13]. For the case of 𝑟 ≥ 2, we give an efficient algorithm for
testing whether |𝜓⟩ is an MPS of bond dimension 𝑟 using 𝑚 = 𝑂(𝑛𝑟2) copies, independent of the
dimensions of the qudits, and we show that Ω(𝑛1/2) copies are necessary for this task. This lower
bound shows that a dependence on the number of qudits 𝑛 is necessary, in sharp contrast to the
case of product states where a constant number of copies suffices. This chapter is based on:

[SW22] Mehdi Soleimanifar and John Wright. Testing matrix product states. In Proceedings of the
2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1679–1701, 2022.

2.1 Introduction

This chapter is about matrix product states (MPS).

Definition 1 (Matrix product states). A quantum state |𝜓⟩ ∈ C𝑑1 ⊗· · ·⊗C𝑑𝑛 consisting of 𝑛 qudits
is a matrix product state with bond dimension 𝑟 if it can be written as

|𝜓1,...,𝑛⟩ =
∑︁

𝑖1∈[𝑑1],...,𝑖𝑛∈[𝑑𝑛]

tr[𝐴
(1)
𝑖1

· · ·𝐴(𝑛)
𝑖𝑛

] · |𝑖1 · · · 𝑖𝑛⟩,
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where each matrix 𝐴(𝑖)
𝑗 is an 𝑟 × 𝑟 complex matrix, for 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑑𝑖]. We write MPS𝑛(𝑟) for

the set of such states, or more simply MPS(𝑟) when the dependency on 𝑛 is clear from the context.

The parameter 𝑟 controls the amount of entanglement |𝜓⟩ is allowed to possess, and as it
increases, the set of MPS grows larger and more expressive. On one extreme, when 𝑟 = 1 this
corresponds to the set of product states, i.e. state of the form |𝜓1⟩ ⊗ · · · ⊗ |𝜓𝑛⟩, which possess
no entanglement between different qudits. On the other extreme, every state |𝜓⟩, even a highly
entangled one, is an MPS of bond dimension 𝑟 = 𝑑1 · · · 𝑑𝑛. Between these two extremes, MPS
allow for nonzero though still limited entanglement, which grows with 𝑟. This can be seen more
readily in the following alternative characterization of MPS, which states that |𝜓1,...,𝑛⟩ is an MPS
of bond dimension 𝑟 if and only if 𝜓1,...,𝑘 has rank 𝑟 for each 1 ≤ 𝑘 ≤ 𝑛, where 𝜓1,...,𝑘 is the reduced
density matrix on the first 𝑘 qudits. Here, we say that a Hermitian matrix has rank 𝑟 if it has at
most 𝑟 nonzero eigenvalues. This implies, for example, that the entanglement entropy between the
first 𝑘 and the last 𝑛− 𝑘 qudits is always at most log(𝑟), for each 𝑘. We will prefer this alternative
characterization in this chapter.

MPS feature prominently in the study of quantum many-body physics, with a particular empha-
sis on one-dimensional quantum systems. In a typical one-dimensional quantum system, 𝑛 qudits
are arranged on a line, and their interactions are governed by a local Hamiltonian 𝐻 which only
contains local terms between neighboring qudits, i.e. terms of the form 𝐻𝑖,𝑖+1. The one-dimensional
area law of Hastings [Has07a], as well as further refinements in [ALV12, AKLV13, LVV15], implies
that if 𝐻 is a gapped Hamiltonian, then its ground state |𝜓1,...,𝑛⟩, is well-approximated by an MPS
of “small” bond dimension. One-dimensional quantum systems are an important class of physically-
motivated systems, and this characterization in terms of MPS means they are tractable to analyze
with computers. For example, [ALVV17] have developed rigorous algorithms for approximating
the ground state of a one-dimensional gapped Hamiltonian. And [CPF+10] have suggested using
MPS tomography to efficiently learn the state of a one-dimensional system using a small number of
copies, motivated by the fact that an MPS only has (𝑑1+ · · ·+𝑑𝑛)𝑟2 parameters to “learn”, exponen-
tially fewer than the 𝑑1 · · · 𝑑𝑛 parameters of a general quantum state. The classical tractability of
matrix product states has also resulted in their widespread application as a computational method
in the classical simulation of quantum circuits, both in one and higher dimensions. This includes
the simulation of shallow quantum circuits [NLPD+19, BGM21, CC22], slightly entangled quantum
circuits [Vid03], and noisy quantum circuits [ZSW20].

In this chapter, we study the problem of “testing” whether an unknown state |𝜓⟩ is an MPS.
We will study this in the model of property testing. In this model, an algorithm is given access to
multiple copies of |𝜓⟩ which it is allowed to measure; its goal is to determine if |𝜓⟩ is an MPS using
as few copies as possible. This problem has been previously studied for the 𝑟 = 1 case of product
states by Harrow and Montanaro [HM13], and studying the case of general 𝑟 was suggested as an
open direction by Montanaro and de Wolf [MdW13]. To define this model, we begin by formally
defining what it means for a state to be “far” from being an MPS.

Definition 2 (Distance to MPS(𝑟)). Given 𝑛 ≥ 1 and a state |𝜓⟩ ∈ C𝑑1 ⊗ · · · ⊗ C𝑑𝑛, the distance
of |𝜓⟩ to the set MPS(𝑟) is defined as

Dist𝑟(|𝜓⟩) = min
|𝜑⟩∈MPS(𝑟)

Dtr(𝜓, 𝜑) = min
|𝜑⟩∈MPS(𝑟)

√︀
1− |⟨𝜓|𝜑⟩|2,

where Dtr(·, ·) denotes the standard trace distance, and 𝜓 and 𝜑 denote the mixed states correspond-
ing to |𝜓⟩ and |𝜑⟩, respectively. Sometimes we will prefer to work with the maximum squared overlap
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of |𝜓⟩ with MPS(𝑟), defined as

Overlap𝑟(|𝜓⟩) = max
|𝜑⟩∈MPS(𝑟)

|⟨𝜓|𝜑⟩|2.

When referring to the distance, we will typically use the variable name 𝛿 = Dist𝑟(|𝜓⟩), and when
referring to the overlap, we will typically use 𝜔 = Overlap𝑟(|𝜓⟩) or, alternatively, 1 − 𝜖 = 𝜔. Note
that

𝛿 =
√
1− 𝜔 =

√
𝜖.

Now we define the problem we consider, that of property testing MPS.

Definition 3 (MPS(𝑟) tester). An algorithm 𝒜 is a property tester for MPS(𝑟) using 𝑚 = 𝑚(𝑛, 𝑟, 𝛿)
copies if, given 𝛿 > 0 and 𝑚 copies of |𝜓⟩ ∈ C𝑑1 ⊗ · · · ⊗ C𝑑𝑛, it acts as follows.

∘ (Completeness): If |𝜓⟩ ∈ MPS(𝑟), then

Pr[𝒜 accepts given |𝜓⟩⊗𝑚] ≥ 2
3 .

If instead it accepts with probability exactly 1 in this case, we say that it has perfect complete-
ness.

∘ (Soundness): If Dist𝑟(|𝜓⟩) ≥ 𝛿, then

Pr[𝒜 accepts given |𝜓⟩⊗𝑚] ≤ 1
3 .

All property testers considered in this chapter have perfect completeness, whereas our lower bounds
will apply to property testers even with imperfect completeness.

Previous works have considered testing a variety of properties of quantum states. Perhaps
the most relevant is that of O’Donnell and Wright [OW15], which considered testing properties
of a mixed state 𝜌’s spectrum, such as testing whether its rank is at most 𝑟—we will revisit this
later. Another relevant work is that of Harrow, Montanaro, and Lin [HLM17], which considers the
problem of testing whether |𝜓1,...,𝑛⟩ is a product state across some cut, meaning there exists an
𝑆 ⊆ {1, . . . , 𝑛} such that |𝜓1,...,𝑛⟩ = |𝜓𝑆⟩⊗ |𝜓𝑆⟩. If not, they say that |𝜓1,...,𝑛⟩ possesses “genuine 𝑛-
partite entanglement”. (In contrast, in 𝑟 = 1 case of product testing, we want to verify that |𝜓1,...,𝑛⟩
is a product state across every cut 𝑆.) They give a tester for this problem which uses 𝑚 = 𝑂(𝑛/𝜖2)
copies of the state. For more on quantum property testing, see the survey of Montanaro and de
Wolf [MdW13].

More broadly, testing and characterizing the entanglement of quantum systems has been an
important theme running throughout quantum computation, even outside the model of property
testing. This includes the study of nonlocal games, where the CHSH game [CHSH69] allows one
to verify that two parties share an EPR state, with applications in delegation of quantum compu-
tation [Mah18, CGJV19, RUV13], device-independent quantum cryptography [VV19], and inter-
active proof systems [JNV+20]. Moreover, the communication complexity of two-party protocols
for testing shared entangled states, including EPR states, has been used to reveal the properties of
entanglement in ground states of local Hamiltonians [AHL+14, AHS20].

We emphasize that we are specifically considering property testing of pure states. In particular,
we assume that the state the algorithm 𝒜 is given 𝑚 copies of is pure, not mixed. There are,
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however, problems related to ours in the property testing of mixed states, although we do not cover
these in this chapter. One example is the question of testing whether a mixed state 𝜌AB on two
𝑑-dimensional subsystems is separable (i.e. not entangled), which is both fascinating and still very
much open. The best known algorithm for this problem is the trivial one: simply use 𝑂(𝑑4) copies
to “learn” 𝜌AB and classically compute whether it is entangled. On the other hand, the best known
lower bound is Ω(𝑑2). Another example is the problem of testing whether 𝜌AB is a tensor product,
i.e. whether 𝜌AB = 𝜌𝐴 ⊗ 𝜌𝐵. For this problem, we do know the optimal bound: Θ(𝑑2) copies, given
by the algorithm of [Yu21]. One convenience of pure states is that these two problems coincide for
this case, since a pure state is a product state if and only if it is unentangled. For mixed states,
this is not true.

While in this chapter, we focus primarily on MPS. We note that these states are a special example
of the more general class of tensor network states. Devising learning and testing algorithms for these
states is an interesting future direction to explore.

2.1.1 The product test

We begin with the simplest case of MPS testing, when the bond dimension 𝑟 = 1, which corresponds
to testing whether |𝜓⟩ ∈ C𝑑1 ⊗ · · · ⊗ C𝑑𝑛 is a product state. We study a simple two-copy property
tester for this problem known as the product test which was introduced by Mintert, Kuś, and
Buchleitner [MKB05] and later studied by Harrow and Montanaro [HM13]. The product test is
itself built out of a simpler subroutine known as the SWAP test due to Buhrman, Cleve, Watrous,
and de Wolf [BCWdW01], which measures the similarity between two qudit states |𝑎⟩, |𝑏⟩ ∈ C𝑑.

Definition 4 (The SWAP test). Given two qudit states |𝑎⟩, |𝑏⟩ ∈ C𝑑, the SWAP test applies the two-
outcome projective measurement {ΠSWAP,1−ΠSWAP} to |𝑎⟩ ⊗ |𝑏⟩, where ΠSWAP = (1+ SWAP)/2.
Here, SWAP is the two-qudit swap operator, defined as

SWAP|𝑖⟩ ⊗ |𝑗⟩ = |𝑗⟩ ⊗ |𝑖⟩

for all 𝑖, 𝑗 ∈ [𝑑]. The test accepts if it observes the first outcome, and it rejects otherwise.

It can be checked that the SWAP test succeeds with probability 1
2 + 1

2 |⟨𝑎|𝑏⟩|2. In particular,
it succeeds with probability 1 if and only if, modulo a phase factor, |𝑎⟩ = |𝑏⟩. Having defined the
SWAP test, we can now define the product test.

Definition 5 (The product test). Given two copies of a state |𝜓⟩ ∈ C𝑑1 ⊗ · · · ⊗ C𝑑𝑛, the product
test performs the SWAP test on the 𝑖-th qudit in each copy of |𝜓⟩, simultaneously over all 𝑖 ∈ [𝑛],
and accepts if they all accept. Equivalently, it performs the two-outcome projective measurement
{ΠProd,1 − ΠProd}, where ΠProd = Π⊗𝑛

SWAP. and the 𝑖-th ΠSWAP applies to the 𝑖-th qudits in both
copies of |𝜓⟩. We include an illustration of the product test in Figure 2-1a.

In the case when |𝜓⟩ is a product state, i.e. |𝜓⟩ = |𝜓1⟩⊗ · · ·⊗ |𝜓𝑛⟩, the product test passes with
probability 1, because for each 𝑖 ∈ [𝑛] the 𝑖-th SWAP test is applied to |𝜓𝑖⟩ ⊗ |𝜓𝑖⟩, and so it always
succeeds. This property of always accepting product states is known as perfect completeness. In
fact, Harrow and Montanaro [HM13, Section 5] show that the product test is the optimal two-copy
test for product states with perfect completeness, in the sense that any other two-copy test with
perfect completeness will reject any non-product state |𝜓⟩ with at most the probability the product
test rejects it.

We are interested in the maximum probability a state passes the product test, defined as follows.
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(a) The product test performs a SWAP test on each
of the 𝑛 pairs of subsystems of the two copies of |𝜓⟩.
Figure taken from [HM13].
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(b) The MPS tester simultaneously performs the rank
tester on each of the 𝑛− 1 contiguous cuts across the
multiple copies of |𝜓⟩.

Figure 2-1: The product tester and the MPS tester.

Definition 6. Let 𝑛 ≥ 1 and 𝜔 ∈ [0, 1]. Given a state |𝜓⟩ ∈ C𝑑1⊗· · ·⊗C𝑑𝑛 we define PT𝑛(|𝜓⟩) to be
the probability the product test succeeds on |𝜓⟩. In addition, we define PT𝑛(𝜔) to be the supremum
of PT𝑛(|𝜓⟩) over all 𝑛-partite states |𝜓⟩ such that Overlap1(|𝜓⟩) = 𝜔.

The main result of Harrow and Montanaro [HM13] is the following upper-bound on PT𝑛(𝜔). It
will be more convenient to parameterize their result by 𝜖, where 1− 𝜖 = 𝜔.

Theorem 7 ([HM13, Theorem 1]). For all 𝑛 ≥ 1 and 0 < 𝜖 < 1,

PT𝑛(1− 𝜖) ≤ min{1− 𝜖+ 𝜖2 + 𝜖3/2, 1− 11
512𝜖}.

Equivalently, we may write

PT𝑛(1− 𝜖) ≤
{︂

1− 𝜖+ 𝜖2 + 𝜖3/2 if 𝜖 ≤ 𝜖0,
1− 11

512𝜖 if 𝜖 ≥ 𝜖0,

where 𝜖0 = 1
512(757− 16

√
1258) ≈ 0.37. We include a plot of this upper-bound in Figure 2-2.

The most important regime of parameters is when 𝜖 is a constant, in which case this result states
that the product test rejects with constant probability. This implies that two copies are sufficient
to test if |𝜓⟩ is constantly far from being product. Theorem 7 is a key ingredient in Harrow and
Montanaro’s proof that QMA(2) = QMA(𝑘) for 𝑘 ≥ 2 [HM13]. Here, QMA(𝑘) refers to Quantum
Merlin Arthur with multiple certificates, the complexity class which contains all problems solvable
by a quantum polynomial-time verifier with the help of 𝑘 unentangled proofs. Their result shows
that a verifier can use two unentangled copies of a proof |𝜓⟩ to simulate 𝑘 unentangled proofs by
running the product test to enforce that it is of the form |𝜓1⟩ ⊗ · · · ⊗ |𝜓𝑘⟩. As further applications
of Theorem 7, they are able to derive hardness results for numerous (19, in fact!) problems both
in and out of quantum information theory related to entanglement, tensor optimization, and other
topics. For example, one of their applications is to the problem of detecting separability, in which
the goal is to compute whether a mixed state 𝜌 on two subsystems of dimension 𝑑 (described
by a 𝑑2 × 𝑑2 complex matrix) is separable or entangled. They show that there exists a constant
𝛿 > 0 such that if 𝐾 is a convex set in which every element has trace distance 𝛿 to a separable
state, then there is no polynomial time algorithm for computing whether 𝜌 ∈ 𝐾 unless 3-SAT ∈
DTIME(exp(

√
𝑛 log𝑂(1)(𝑛))). See [HM13, Section 4.2] for further details and descriptions of the 18

other applications.
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Our first result is a new and simpler analysis of the product test which yields an improved
bound. We show the following.

Theorem 8 (Product test upper-bound). For all 𝑛 ≥ 1,

PT𝑛(𝜔) ≤
{︂
𝜔2 − 𝜔 + 1 if 𝜔 ≥ 1

2 ,
1
3𝜔

2 + 2
3 otherwise.

We include a plot of this upper-bound in Figure 2-2.

To compare this with Theorem 7, if we set 1− 𝜖 = 𝜔 then we can rewrite this bound as

PT𝑛(1− 𝜖) ≤
{︂

1− 𝜖+ 𝜖2 if 𝜖 ≤ 1
2 ,

1− 2
3𝜖+

1
3𝜖

2 otherwise.

This improves upon Theorem 7 for all choices of 𝜖 > 0, i.e. all 𝜔 < 1, which answers open problem
no. 2 from [HM13] and question no. 5 from [MdW13]. In addition, the bound we achieve when
𝜔 ≥ 1

2 is optimal, as the following well-known example shows (cf. [HM13, Page 31]).

Proposition 9 (Product test lower-bound). For 𝑛 = 2 and 𝜔 ≥ 1
2 , consider the state |𝜓⟩ =√

𝜔|11⟩+
√
1− 𝜔|22⟩. Then Overlap1(|𝜓⟩) = 𝜔 and

PT2(|𝜓⟩) = 𝜔2 − 𝜔 + 1.

In addition, for 𝑛 > 2, consider |𝜓⟩ ⊗ |𝜑⟩, where |𝜑⟩ is any product state in C𝑑3 ⊗ · · · ⊗ C𝑑𝑛. Then
this has the same overlap and probability of success as |𝜓⟩.

The proof of Proposition 9 is standard and we include it in Section 2.2.2. Combining Theorem 8
and Proposition 9 allows us to exactly compute PT(𝜔) for 𝜔 ≥ 1

2 .

Corollary 10 (Product test, tight bound). For all 𝑛 ≥ 2 and 𝜔 ≥ 1
2 , PT𝑛(𝜔) = 𝜔2 − 𝜔 + 1.

This settles the performance of the product test when 𝜔 ≥ 1
2 . The regime of 𝜔 < 1

2 remains
open, however. As [HM13] points out, this regime “is generally somewhat mysterious”, and getting a
better understanding of this case is part of open problem no. 2 in their work. One possible starting
point is to understand the behavior of PT𝑛(𝜔) as 𝜔 → 0. For example, as [HM13] show on page 32,
the 𝑑-dimensional maximally entangled state |𝜓⟩ = 1√

𝑑

∑︀𝑑
𝑖=1 |𝑖𝑖⟩ has

𝜔 = 1/𝑑 and PT2(|𝜓⟩) = 1
2(1 +

1
𝑑).

This suggests the following question: does PT𝑛(𝜔) → 1
2 as 𝜔 → 0?

Our proof of Theorem 8 is a simple inductive argument. Decomposing the product test mea-
surement as ΠProd = (1⊗Π⊗𝑛−1

SWAP) · (ΠSWAP ⊗1), we can view it as first performing the SWAP test
on the first qudit register of |𝜓⟩ and then, if it succeeds, performing the (𝑛− 1)-qudit product test
on the remaining qudit registers. Supposing that |𝜓⟩ is far from being a product state, either the
first qudit of |𝜓⟩ is highly entangled with the remaining qudits, or the other qudits are far from
being a product state (even conditioned on the first SWAP test succeeding). In the first case, the
SWAP test rejects with good probability, and in the second case, the (𝑛 − 1)-qubit products test
rejects with good probability, by induction. Balancing between these two cases gives our bound.
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Figure 2-2: Upper bounds on PT(𝜔) as a function of 𝜔 = 1− 𝜖.

∘ The red line is the function 1
3𝜔

2 + 2
3 and the magenta line is the function 𝜔2 − 𝜔 + 1. The

thick pink line is the minimum of the two. This is the upper bound we prove.

∘ The blue line is the function 1 − 𝜖 + 𝜖2 + 𝜖3/2 and the cyan line is the function 1 − 11
512𝜖.

The thick light blue line is the minimum of the two. This is the upper bound of Harrow and
Montanaro [HM13].

The proof of the bound PT𝑛(𝜔) ≤ 1
3𝜔

2+ 2
3 is especially simple and fits in a page. Though weaker

than our general bound when 𝜔 ≥ 1
2 , this bound is still sufficient to recover all the applications of

the product test in [HM13], including the proof that QMA(2) = QMA(𝑘) for 𝑘 ≥ 2. We include it as
a separate argument in Section 2.2.1. The proof of the general bound from Theorem 8 is contained
in Section 2.2.2.

So far we have considered the case of product testing where the number of copies 𝑚 is exactly
two, but the property testing model requires us to take 𝑚 sufficiently large to detect non-product
states with constant probability. For even 𝑚, a simple strategy is to run 𝑚/2 parallel copies of
the product test and reject if any of them rejects. If Overlap1(|𝜓⟩) = 1 − 𝜖, then this will accept
with probability at most (1− 2

3𝜖+
1
3𝜖

2)𝑚/2. Making this probability smaller than 1
3 as required by

Definition 3 entails setting 𝑚 = 𝑂(1/𝜖). Using the distance 𝛿 =
√
𝜖, this can be stated as follows.

Proposition 11 (Copy complexity of testing product states). Following the language of Defini-
tion 3, testing whether a state |𝜓⟩ ∈ C𝑑1⊗· · ·⊗C𝑑𝑛 is a product state can be done using 𝑚 = 𝑂(1/𝛿2)
copies and with prefect completeness.

This is optimal, as Ω(1/𝛿2) copies are always required to distinguish between two states which
are 𝛿-far from each other in trace distance. We note that the same copy complexity follows from
Theorem 7, the bound given by Harrow and Montanaro [HM13].
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2.1.2 Testing matrix product states

Having already considered the case of MPS testing with bond dimension 𝑟 = 1, we now consider
the case of bond dimension 𝑟 > 1. To our knowledge, there is no prior work on this problem.

One idea for testing MPS is to use the general “test-by-learning” framework from property
testing. In our case, given a state |𝜓⟩, this entails performing MPS tomography on |𝜓⟩ to learn an
MPS(𝑟) approximation |𝜑⟩ and then applying the SWAP test on |𝜓⟩ and |𝜑⟩. If |𝜓⟩ is in MPS(𝑟),
then |𝜑⟩ will be a good approximation, and so the SWAP test will usually succeed, but if |𝜓⟩ is
far from MPS(𝑟), then |𝜑⟩ will be a bad approximation, and so the SWAP test will usually fail.
Various algorithms for MPS tomography have been proposed in the literature, for example those
in the works [CPF+10, LMH+17]. One would expect that since states in MPS(𝑟) can be described
using 𝑛𝑑𝑟2 parameters, where 𝑑 is the largest subsystem dimension, the optimal algorithm for
MPS(𝑟) tomography should use 𝑂(𝑛𝑑𝑟2/𝛿2) copies, though this precise bound is not yet known to
our knowledge. We propose and analyze a more direct MPS testing algorithm that improves on this
“test-by-learning” method by a factor of 𝑂(𝑑).

We begin by designing an algorithm for this problem which we call the MPS tester. The MPS
tester is motivated by the fact that |𝜓1,...,𝑛⟩ is in MPS(𝑟) if and only if 𝜓1,...,𝑘 has rank 𝑟 for each
1 ≤ 𝑘 ≤ 𝑛. This relates the problem of MPS testing to the problem of rank testing, i.e. of testing
whether a mixed state 𝜌 has rank 𝑟, which was previously considered in the work of O’Donnell and
Wright [OW15]. They designed an algorithm called the rank tester which can test whether 𝜌 is
rank 𝑟 using 𝑚 = Θ(𝑟2/𝛿) copies of 𝜌. When the 𝑟 = 1 rank tester is run with 𝑚 = 2 copies of 𝜌,
it is equivalent to the SWAP test, and for larger values of 𝑟 and 𝑚 it uses a generalization of the
SWAP measurement known as weak Schur sampling. It has perfect completeness, meaning that it
always accepts states of rank 𝑟, and in fact it is the optimal test for states of rank 𝑟 with perfect
completeness, as shown in [OW15, Proposition 6.1].

With the rank tester in hand, we define the MPS tester to be the algorithm which simultaneously
performs a separate instance of the rank tester on 𝜓1,...,𝑘 for each 1 ≤ 𝑘 ≤ 𝑛 and accepts if each
instance of the rank tester accepts. We include an illustration of the MPS tester in Figure 2-1b. We
show that this test has perfect completeness, meaning that it accepts every state in MPS(𝑟) with
probability 1, although we are not sure if it is the optimal algorithm with perfect completeness; we
view this as an interesting open direction. We show the following bound on its copy complexity.

Theorem 12 (Copy complexity of the MPS tester). Given 𝑚 = 𝑂(𝑛𝑟2/𝛿2) copies of a state
|𝜓⟩ ∈ C𝑑1 ⊗ · · · ⊗ C𝑑𝑛, the MPS tester tests whether |𝜓⟩ is in MPS(𝑟) with perfect completeness.

To prove this result, we first show that if |𝜓⟩ is 𝛿-far from the set MPS(𝑟), then there exists
1 ≤ 𝑘 ≤ 𝑛 such that 𝜓1,...,𝑘 is 𝛿′ = (𝛿2/2𝑛)-far from being rank-𝑟. Then the probability that the
MPS tester accepts |𝜓⟩ is at most the probability that the rank tester accepts 𝜓1,...,𝑘, and this is
at most 1/3 given that we are using 𝑂(𝑟2/𝛿′) = 𝑂(𝑛𝑟2/𝛿2) copies of |𝜓⟩. One minor technicality
that arises is checking that the MPS tester does indeed perform a valid measurement, which entails
showing that the rank testers for each 𝜓1,...,𝑘 can all be simultaneously measured.

Remark 13 (Time complexity of the MPS tester). The 𝑚-copy rank tester of [OW15] can be
performed efficiently with a quantum circuit of size poly (𝑚, log(𝑑)) using the algorithm of [Kro19]
or [Har05, Page 160] that implements weak Schur sampling. Here 𝑑 is the dimension of the state
𝜌 whose 𝑚 copies 𝜌⊗𝑚 are input to the rank tester. The MPS tester performs the rank tester on
𝑚 = 𝑛𝑟2/𝛿2 copies of the reduced states 𝜓1,...,𝑘 for 1 ≤ 𝑘 ≤ 𝑛. The maximum dimension of these
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reduced states is less than log(𝑑1 . . . 𝑑𝑛) ≤ 𝑛 log(𝑑) where 𝑑 = max𝑖∈[𝑛] 𝑑𝑖. Hence, the MPS tester
can be implemented with a quantum circuit of size poly (𝑛, 𝑟, 1/𝛿, log(𝑑)).

We believe that the bound in Theorem 12 is not tight, and that an inductive argument similar
to our analysis of the product tester should be able to improve it. As an example, consider the
“bunny state”

|𝑏𝑛⟩ = 1√
𝑛−1

(|110 · · · 0⟩+ |011 · · · 0⟩+ · · ·+ |0 · · · 011⟩).

We can show that this state, which is in MPS(3), has Overlap2(|𝑏𝑛⟩) ≤ 2
3 . But does the 𝑟 = 2 MPS

tester detect this? The above analysis suggests we should find the reduced density matrix (𝑏𝑛)1,...,𝑖
which is farthest from being rank 2. It can be checked that (𝑏𝑛)1 and (𝑏𝑛)1,...,𝑛−1 are both rank 2.
Otherwise, for 𝑖 ∈ {2, . . . , 𝑛− 2}, the Schmidt decomposition of |𝑏𝑛⟩ into subsystems {1, . . . , 𝑖} and
{𝑖+ 1, . . . , 𝑛} is

|𝑏𝑛⟩ =
√︁

𝑖−1
𝑛−1 |𝑏𝑖⟩ ⊗ |0 · · · 0⟩+ 1√

𝑛−1
|0 · · · 01⟩ ⊗ |10 · · · 0⟩+

√︁
𝑛−𝑖−1
𝑛−1 |𝑏𝑛−𝑖⟩ ⊗ |0 · · · 0⟩

Hence, (𝑏𝑛)1,...,𝑖 has eigenvalues 𝑖−1
𝑛−1 ,

1
𝑛−1 ,

𝑛−𝑖−1
𝑛−1 , and so it is distance 1

𝑛−1 from rank-2. As a result,
the rank tester needs 𝑂(𝑛) copies of (𝑏𝑛)1,...,𝑖 to detect this, and therefore the MPS tester needs
𝑂(𝑛) copies of |𝑏𝑛⟩ if we use our above analysis. However, we have done a more careful analysis
of the bunny state in line with the inductive argument for the product test, and we can show that
the MPS tester only needs 3 copies of |𝑏𝑛⟩ to detect that it is not in MPS(2). In particular, the
MPS tester rejects |𝑏𝑛⟩⊗3 with probability at least 1

6 . This means that the above analysis is too
pessimistic, at least for the bunny state.

Unfortunately, we were unable to carry this proof strategy out in general. One difficulty is that
we are not even sure what upper bound to conjecture for this problem. Originally, we had guessed
that the MPS tester only needed 𝑚 = 𝑂(𝑟2/𝛿2) copies, or perhaps some other copy complexity
which is independent of 𝑛, but we now know this is false, due to the following lower bound.

Theorem 14 (MPS testing lower bound). For 𝑟 ≥ 2 and 𝛿 ≤ 1/
√
2, testing whether a state

|𝜓⟩ ∈ C𝑑1 ⊗ · · · ⊗ C𝑑𝑛, is in MPS(𝑟) requires Ω(𝑛1/2/𝛿2) copies of |𝜓⟩.

Theorem 14 shows that a polynomial dependence on 𝑛, as in Theorem 12, is required, even for
the case of bond dimension 𝑟 = 2. This in sharp contrast to the 𝑟 = 1 case of product testing,
in which a constant number of copies suffice, independent of 𝑛. This leaves open the following
question: what is the optimal copy complexity for MPS(𝑟) testing, for 𝑟 ≥ 2?

The proof of the lower bound consists of two parts. We consider a quantum state |Φ𝑛⟩ = |𝜙⟩⊗𝑛
2

where |𝜙⟩ ∈ C𝑑 ⊗ C𝑑 for some 𝑑 ≥ 2𝑟 − 1 and Dist𝑟 (|𝜙⟩) = Ω(𝛿/
√
𝑛). In the first step, we use

an inductive argument to prove that Dist𝑟 (|Φ𝑛⟩) ≥ 𝛿. In the second step, we consider the density
matrix corresponding to the ensemble of states obtained by applying random local unitaries to the
subsystems of |Φ𝑛⟩. Since all the states in this ensemble are 𝛿-far from MPS(𝑟), a tester should
reject this density matrix with probability at least 2/3. We show that without sufficiently large
number of copies, no MPS(𝑟) tester that accepts states in MPS(𝑟) with probability ≥ 2/3 can also
reject this density matrix with probability ≥ 2/3.

We prove our MPS tester upper bound (Theorem 12) in Section 2.4 and our MPS testing lower
bound (Theorem 14) in Section 2.5.
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2.2 The product test

2.2.1 A simple analysis of the product test

We begin with a simple analysis of the product test which shows that it rejects with constant
probability if |𝜓⟩ is a constant distance from the set of product states. This is sufficient to show
QMA(2) = QMA(𝑘) via the proof of [HM13].

Theorem 15 (Product test, simple bound). For all 𝑛 ≥ 1, PT𝑛(𝜔) ≤ 1
3𝜔

2 + 2
3 .

Proof. By induction, the 𝑛 = 1 case being trivial. For the inductive step, let us assume Theorem 15
holds for (𝑛 − 1)-partite states. Let |𝜓⟩ ∈ C𝑑1 ⊗ · · · ⊗ C𝑑𝑛 be a state with Overlap(|𝜓⟩) = 𝜔.
For shorthand we write 𝑑 := 𝑑1. Note that the product test measurement can be written as
Π⊗𝑛

SWAP =
(︀
1⊗Π⊗𝑛−1

SWAP

)︀
· (ΠSWAP ⊗ 1). We can therefore view the test as first applying ΠSWAP to

the first subsystem, and, if it succeeds, then applying Π⊗𝑛−1
SWAP (i.e. the product test) to the resulting

reduced state on the last 𝑛− 1 subsystems. The probability this succeeds we bound by induction.
We begin by taking the Schmidt decomposition of |𝜓⟩ into subsystems {1} and {2, . . . , 𝑛}:

|𝜓⟩ =
√︀
𝜆1 |𝑎1⟩ |𝑏1⟩+ · · ·+

√︀
𝜆𝑑 |𝑎𝑑⟩ |𝑏𝑑⟩ ,

where 𝜆1 ≥ · · · ≥ 𝜆𝑑, |𝑎𝑖⟩ ∈ C𝑑, and |𝑏𝑖⟩ ∈ C𝑑2 ⊗ · · · ⊗ C𝑑𝑛 . As a result,

|𝜓⟩⊗2 =
∑︁
𝑖∈[𝑑]

𝜆𝑖 |𝑎𝑖⟩⊗2 |𝑏𝑖⟩⊗2 +
∑︁
𝑖<𝑗

√︀
𝜆𝑖𝜆𝑗 (|𝑎𝑖𝑎𝑗⟩ |𝑏𝑖𝑏𝑗⟩+ |𝑎𝑗𝑎𝑖⟩ |𝑏𝑗𝑏𝑖⟩) .

The result of applying the first projector to |𝜓⟩⊗2 is therefore

ΠSWAP ⊗ 𝐼 · |𝜓⟩⊗2 =
∑︁
𝑖∈[𝑑]

𝜆𝑖 |𝑎𝑖⟩⊗2 |𝑏𝑖⟩⊗2 +
∑︁
𝑖<𝑗

√︀
𝜆𝑖𝜆𝑗

(︂ |𝑎𝑖𝑎𝑗⟩+ |𝑎𝑗𝑎𝑖⟩√
2

)︂(︂ |𝑏𝑖𝑏𝑗⟩+ |𝑏𝑗𝑏𝑖⟩√
2

)︂
. (2.1)

We note that this vector’s two-norm, and hence the probability the test passes in the first step, is
𝜇 :=

∑︀
𝑖 𝜆

2
𝑖 +

∑︀
𝑖<𝑗 𝜆𝑖𝜆𝑗 . Conditioned on this, the mixed state of subsystems 2, . . . , 𝑛 is

|𝑏𝑖⟩⊗2 with prob.
𝜆2𝑖
𝜇
,

1√
2
(|𝑏𝑖𝑏𝑗⟩+ |𝑏𝑗𝑏𝑖⟩) with prob.

𝜆𝑖𝜆𝑗
𝜇

.

This is by (2.1) and the fact that the |𝑎𝑖⟩⊗2’s and the (|𝑎𝑖𝑎𝑗⟩+ |𝑎𝑗𝑎𝑖⟩)’s are orthogonal. We must
now bound the probability that the product test on 𝑛 − 1 subsystems succeeds in each of these
cases. In the first case this is PT𝑛−1 (|𝑏1⟩), and in the rest of the cases we will charitably bound the
probability by 1. This gives us:

PT𝑛(|𝜓⟩) ≤ 𝜇 ·

⎛⎝𝜆21
𝜇

· PT𝑛−1 (|𝑏1⟩) +
∑︁
𝑖>1

𝜆2𝑖
𝜇

+
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗
𝜇

⎞⎠ = 𝜆21 · PT𝑛−1 (|𝑏1⟩) +
∑︁
𝑖>1

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗 .

(2.2)
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Writing 𝜑 = Overlap (|𝑏1⟩), the inductive hypothesis gives us

PT𝑛(|𝜓⟩) ≤ 𝜆21 ·
(︂
1

3
𝜑2 +

2

3

)︂
+
∑︁
𝑖>1

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

=

(︂
1

3
(𝜆1𝜑)

2 +
2

3

)︂
− 1

3

∑︁
𝑖>1

(𝜆1 − 𝜆𝑖)𝜆𝑖 −
1

3

∑︁
1<𝑖<𝑗

𝜆𝑖𝜆𝑗 ≤
1

3
(𝜆1𝜑)

2 +
2

3
, (2.3)

where the last inequality follows because 𝜆1 ≥ · · · ≥ 𝜆𝑑. Now, by definition of 𝜑, there exists a
product state |𝑣⟩ ∈ C𝑑2 ⊗· · ·⊗C𝑑𝑛 such that 𝜑 = |⟨𝑏1|𝑣⟩|2. But then |𝑎1⟩⊗|𝑣⟩, also a product state,
has squared-inner-product 𝜆1𝜑 with |𝜓⟩, meaning 𝜆1𝜑 ≤ Overlap(𝜓) = 𝜔, and so by (2.3) the test
succeeds with probability at most 1

3𝜔
2 + 2

3 . ⊓⊔

2.2.2 A tight analysis of the product test for 𝜔 ≥ 1
2

Next, we sharpen our upper-bound from Theorem 15 in the 𝜔 ≥ 1
2 case.

Theorem 16 (Product test, sharpened bound; Theorem 8 restated). For all 𝑛 ≥ 1,

PT𝑛(𝜔) ≤
{︂
𝜔2 − 𝜔 + 1 if 𝜔 ≥ 1

2 ,
1
3𝜔

2 + 2
3 otherwise.

We begin by showing that Theorem 16 is tight for 𝜔 ≥ 1
2 using a simple example from [HM13,

Page 31]).

Proposition 17 (Product test lower-bound; Proposition 9 restated). For 𝑛 = 2 and 𝜔 ≥ 1
2 , consider

the state |𝜓⟩ = √
𝜔|11⟩+

√
1− 𝜔|22⟩. Then Overlap1(|𝜓⟩) = 𝜔 and

PT2(|𝜓⟩) = 𝜔2 − 𝜔 + 1.

In addition, for 𝑛 > 2, consider |𝜓⟩ ⊗ |𝜑⟩, where |𝜑⟩ is any product state in C𝑑3 ⊗ · · · ⊗ C𝑑𝑛. Then
this has the same overlap and probability of success as |𝜓⟩.
Proof. First, we show Overlap1(|𝜓⟩) = 𝜔. This is because if |𝑎⟩ =∑︀𝑑1

𝑖=1 𝛼𝑖|𝑖⟩ and |𝑏⟩ =∑︀𝑑2
𝑖=1 𝛽𝑖|𝑖⟩,

|⟨𝜓|𝑎𝑏⟩|2 = |√𝜔 · 𝛼1𝛽1 +
√
1− 𝜔 · 𝛼2𝛽2|2 ≤ 𝜔 · |𝛼1𝛽1|2 + (1− 𝜔) · |𝛼2𝛽2|2.

This is maximized by taking 𝛼1 = 𝛽1 = 1, in which case it equals 𝜔. Next, the probability of success
is PT2(|𝜓⟩) = ‖Π⊗2

SWAP|𝜓⟩⊗2‖2, and so we first compute Π⊗2
SWAP|𝜓⟩⊗2:(︂

1+ SWAP

2

)︂⊗2

· (√𝜔|11⟩+
√
1− 𝜔|22⟩)⊗2

=

(︂
1+ SWAP

2

)︂⊗2

· (𝜔|11⟩|11⟩+
√︀
𝜔(1− 𝜔)(|11⟩|22⟩+ |22⟩|11⟩) + (1− 𝜔)|22⟩|22⟩)

= 𝜔|11⟩|11⟩+
√︀
𝜔(1− 𝜔)

(︂ |12⟩+ |21⟩√
2

)︂
⊗
(︂ |12⟩+ |21⟩√

2

)︂
+ (1− 𝜔)|22⟩|22⟩.

The squared length of this is 𝜔2 + 𝜔(1− 𝜔) + (1− 𝜔)2 = 𝜔2 − 𝜔 + 1, and so this equals PT2(|𝜓⟩).
The 𝑛 > 2 case is an immediate consequence of the 𝑛 = 2 case. ⊓⊔
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Now we prove Theorem 16.

Proof of Theorem 16. By induction, where again the 𝑛 = 1 case is trivial. For the inductive step,
let 𝑓0(𝜔) = 1

3𝜔
2 + 2

3 and 𝐼0 = [0, 12 ]. Let 𝑓1(𝜔) = 𝜔2 − 𝜔 + 1 and 𝐼1 = [12 , 1]. The upper bound on
PT(𝜔) we are trying to show is

UB(𝜔) =

{︂
𝑓0(𝜔) if 𝜔 ∈ 𝐼0,
𝑓1(𝜔) if 𝜔 ∈ 𝐼1.

Note that UB(𝜔) is a non-decreasing function of 𝜔, and that UB(𝜔) = min{𝑓0(𝜔), 𝑓1(𝜔)} because
𝑓0(𝜔) ≤ 𝑓1(𝜔) for 𝜔 ∈ 𝐼0 and 𝑓1(𝜔) ≤ 𝑓0(𝜔) for 𝜔 ∈ 𝐼1. Recalling the proof of Theorem 15, we
showed in (2.2) that

PT𝑛(|𝜓⟩) ≤ 𝜆21 · PT𝑛−1 (|𝑏1⟩) +
∑︁
𝑖>1

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗 .

Write 𝜑 = Overlap (|𝑏1⟩), and suppose that 𝜑 ∈ 𝐼𝛼, for 𝛼 ∈ {0, 1}. Then the inductive hypothesis
gives us

PT𝑛(|𝜓⟩) ≤ 𝜆21 · 𝑓𝛼(𝜑) +
∑︁
𝑖>1

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗 . (2.4)

Recall also that 𝜆1𝜑 ≤ Overlap (|𝜓⟩) = 𝜔, and suppose that 𝜆1𝜑 ∈ 𝐼𝛽 , for 𝛽 ∈ {0, 1}. Our goal will
be to show the inequality (2.4) ≤ 𝑓𝛽(𝜆1𝜑). Then because 𝜆1𝜑 ∈ 𝐼𝛽 we have 𝑓𝛽(𝜆1𝜑) = UB(𝜆1𝜑),
and because 𝜆1𝜑 ≤ 𝜔 and UB(·) is a nondecreasing function, we have UB(𝜆1𝜑) ≤ UB(𝜔), completing
the inductive step. Note that we only have to show (2.4) ≤ 𝑓𝛽(𝜆1𝜑) in the case that 𝛽 ≤ 𝛼, as
𝜆1𝜑 ≤ 𝜑, so we will never have 𝛽 > 𝛼. In particular, we need not consider the case 𝛼 = 0, 𝛽 = 1.

Case 1: 𝛼 = 1, 𝛽 = 1. This case can be shown as follows.

𝜆21 · 𝑓1(𝜑) +
∑︁
𝑖>1

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

= 𝜆21 · (𝜑2 − 𝜑+ 1) +
∑︁
𝑖>1

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

= ((𝜆1𝜑)
2 − 𝜆1𝜑+ 1)− 1 + 𝜆1(1− 𝜆1)𝜑+

∑︁
𝑖

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

≤ 𝑓1(𝜆1𝜑)− 1 + 𝜆1(1− 𝜆1) +
∑︁
𝑖

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗 (because 𝜑 ≤ 1)

= 𝑓1(𝜆1𝜑)− 1 +
∑︁
1<𝑗

𝜆1𝜆𝑗 +
∑︁
𝑖

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

≤ 𝑓1(𝜆1𝜑)− 1 +
∑︁
𝑖

𝜆2𝑖 + 2
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

= 𝑓1(𝜆1𝜑)− 1 +
(︁∑︁

𝑖

𝜆𝑖

)︁2
= 𝑓1(𝜆1𝜑). (because 𝜆1 + · · ·+ 𝜆𝑑 = 1)
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This completes the proof.

Case 2: 𝛼 = 1, 𝛽 = 0. This case can be shown as follows.

𝜆21 · 𝑓1(𝜑) +
∑︁
𝑖>1

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

= 𝜆21 · (𝜑2 − 𝜑+ 1) +
∑︁
𝑖>1

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

= (13(𝜆1𝜑)
2 + 2

3)− 2
3 + 𝜆21(

2
3𝜑

2 − 𝜑+ 1
3) +

2
3𝜆

2
1 +

∑︁
𝑖>1

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

≤ 𝑓0(𝜆1𝜑)− 2
3 + 2

3𝜆
2
1 +

∑︁
𝑖>1

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗 (because 1
2 ≤ 𝜑 ≤ 1)

≤ 𝑓0(𝜆1𝜑)− 2
3 + 2

3

∑︁
𝑖

𝜆2𝑖 +
1
3

∑︁
1<𝑗

𝜆1𝜆𝑗 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗 (because 𝜆𝑗 ≤ 𝜆1)

≤ 𝑓0(𝜆1𝜑)− 2
3 + 2

3

∑︁
𝑖

𝜆2𝑖 +
4
3

∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗

= 𝑓0(𝜆1𝜑)− 2
3 + 2

3

(︁∑︁
𝑖

𝜆𝑖

)︁2
= 𝑓0(𝜆1𝜑). (because 𝜆1 + · · ·+ 𝜆𝑑 = 1)

This completes the proof.

Case 3: 𝛼 = 0, 𝛽 = 0. In this case, we aim to show that

𝜆21 · 𝑓0(𝜑) +
∑︁
𝑖>1

𝜆2𝑖 +
∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗 ≤ 𝑓0(𝜆1𝜑).

This was already shown in Equation (2.3) in the proof of Theorem 15 for all 𝜑 and 𝜆1. This concludes
case 3 and the proof of the theorem. ⊓⊔

2.3 Preliminaries for MPS testing

2.3.1 Low rank approximation to MPS

Lemma 18 (Young-Eckart Theorem [EY36]). Consider a bipartite state |𝜓⟩ ∈ C𝑑1 ⊗ C𝑑2 with
𝑑1 ≥ 𝑑2, and let

|𝜓⟩ =
𝑑2∑︁
𝑖=1

√︀
𝜆𝑖|𝑎𝑖⟩|𝑏𝑖⟩

be its Schmidt decomposition, where 𝜆1 ≥ · · · ≥ 𝜆𝑑2. Then the maximum overlap of |𝜓⟩ with a state
in MPS(𝑟) is Overlap𝑟 (|𝜓⟩) =

∑︀𝑟
𝑖=1 𝜆𝑖, and it is achieved by the state

|𝜑⟩ = 1√︀∑︀𝑟
𝑖=1 𝜆𝑖

𝑟∑︁
𝑖=1

√︀
𝜆𝑖|𝑎𝑖⟩|𝑏𝑖⟩.
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While Lemma 18 gives the closest MPS(𝑟) approximation to a bipartite state, a general lower
bound on the overlap between an 𝑛-partite state and MPS(𝑟) can be also derived. This is stated in
the following lemma.

Lemma 19 (Low-rank Approximation, Lemma 1 of [VC06]). Consider an 𝑛-partite state |𝜓⟩ ∈
C𝑑1 ⊗ · · · ⊗ C𝑑𝑛. For each 𝑖 ∈ {1, . . . , 𝑛 − 1}, write the Schmidt decomposition of |𝜓⟩ across the
subsystems {1, . . . , 𝑖} and {𝑖+ 1, . . . , 𝑛} as

|𝜓⟩ =
𝐷𝑖∑︁
𝑗=1

√︁
𝜆
(𝑖)
𝑗 |𝑎(𝑖)𝑗 ⟩|𝑏(𝑖)𝑗 ⟩,

where 𝐷𝑖 = min{𝑑1 · · · 𝑑𝑖, 𝑑𝑖+1 · · · 𝑑𝑛} and 𝜆(𝑖)1 ≥ · · · ≥ 𝜆
(𝑖)
𝐷𝑖

. Then there exists a state |𝜑⟩ ∈ MPS(𝑟)
with (unsquared) overlap

|⟨𝜑|𝜓⟩| ≥ 1−
𝑛−1∑︁
𝑖=1

𝐷𝑖∑︁
𝑗=𝑟+1

𝜆
(𝑖)
𝑗 .

2.3.2 Representation theory and weak Schur sampling

A common scenario involves having i.i.d. copies of a state 𝜌, which in this chapter could be the
state |𝜓1,...,𝑛⟩ or one of its marginals. These copies are invariant under permutation. The spectrum
of the state 𝜌, including its rank, is also invariant under the action of any unitary operator 𝑈 that
maps 𝜌 to 𝑈𝜌𝑈 †. In this section, we study these symmetries and discuss how we can exploit them
in the analysis of our MPS tester. The content of this section is already covered in detail in previous
works (see [Wri16, Section 2.5], [Har05, Section 5.3], or [CHW07, Section 2] for example). Here we
briefly review these topics.

Definition 20 (Partitions). A partition of 𝑚, denoted by 𝜇 ⊢ 𝑚, is a list of nonnegative integers
𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑘) that satisfy 𝜇1 ≥ 𝜇2 ≥ · · · ≥ 𝜇𝑘 and 𝜇1+𝜇2+ · · ·+𝜇𝑘 = 𝑚. We call the number
of nonzero elements 𝜇𝑖 in 𝜇 the length of the partition and denote it by ℓ(𝜇).

The group of all permutations of {1, . . . ,𝑚} is known as the symmetric group, and we denote it by
S𝑚. In addition, we denote the group of 𝑑×𝑑 unitary operators by U𝑑. Two natural representations
of the groups S𝑚 and U𝑑 over the space (C𝑑)⊗𝑚 are given as follows.

𝒫(𝜋) |𝑎1⟩ ⊗ |𝑎2⟩ ⊗ . . .⊗ |𝑎𝑚⟩ = |𝑎𝜋−1(1)⟩ ⊗ |𝑎𝜋−1(2)⟩ ⊗ . . .⊗ |𝑎𝜋−1(𝑚)⟩,
𝒬(𝑈) |𝑎1⟩ ⊗ |𝑎2⟩ ⊗ . . .⊗ |𝑎𝑚⟩ = (𝑈 |𝑎1⟩) ⊗ (𝑈 |𝑎2⟩) ⊗ . . .⊗ (𝑈 |𝑎𝑚⟩),

where {⨂︀𝑚
𝑖=1 |𝑎𝑖⟩} with 𝑎𝑖 ∈ [𝑑] is a basis for (C𝑑)⊗𝑚, and 𝜋 ∈ S𝑚, 𝑈 ∈ U𝑑. The irreducible

representations (irreps) of the symmetric group, denoted 𝒫𝜇, are indexed by partitions 𝜇 ⊢ 𝑚.
Similarly, the polynomial irreps of the unitary group, denoted 𝒬𝑑

𝜇, are indexed by partitions 𝜇 with
ℓ(𝜇) ≤ 𝑑. The dimension of the symmetric group irrep 𝒫𝜇 is denoted dim(𝜇), and its corresponding
character 𝜒𝜇 is given by 𝜒𝜇(𝜋) = tr[𝒫(𝜋)].

The representations 𝒫(𝜋) and 𝒬(𝑈) commute, meaning that 𝒫(𝜋)𝒬(𝑈) = 𝒬(𝑈)𝒫(𝜋). Hence,
we can consider 𝒫(𝜋)𝒬(𝑈) as a representation of the direct product group S𝑚 × U𝑑. Schur-Weyl
duality, stated as follows, establishes a strong connection between these representations.
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Theorem 21 (Schur–Weyl duality). The space (C𝑑)⊗𝑚 decomposes as

𝒫𝒬
S𝑚×U𝑑∼=

⨁︁
𝜇⊢𝑚
ℓ(𝜇)≤𝑑

𝒫𝜇 ⊗𝒬𝑑
𝜇.

In other words, there exist a unitary 𝑈Schur ∈ U𝑑𝑚 such that for all 𝜋 ∈ S𝑚 and 𝑈 ∈ U𝑑,

𝑈Schur𝒫(𝜋)𝒬(𝑈)𝑈 †
Schur =

∑︁
𝜇⊢𝑚
ℓ(𝜇)≤𝑑

|𝜇⟩⟨𝜇| ⊗ 𝒫𝜆(𝜋)⊗𝒬𝑑
𝜆(𝑈). (2.5)

The unitary operator 𝑈Schur transforms the standard basis into a basis that called the Schur
basis and label by |𝜇⟩|𝑞𝜇⟩|𝑝𝜇⟩. In this basis,

𝒬(𝑈) · |𝜇⟩|𝑞𝜇⟩|𝑝𝜇⟩ = |𝜇⟩(𝒬𝑑
𝜇(𝑈)|𝑞𝜇⟩)|𝑝𝜇⟩,

𝒫(𝜋) · |𝜇⟩|𝑞𝜇⟩|𝑝𝜇⟩ = |𝜇⟩|𝑞𝜇⟩(𝒫𝜇(𝜋)|𝑝𝜇⟩).

Because 𝒬𝑑
𝜇 is a polynomial irrep, it is well-defined for any 𝑑×𝑑 matrix. For example, when applied

to invertible matrices it gives the 𝜇-irrep of the general linear group GL𝑑. We can also apply it to
(possibly) non-invertible matrices, like the state 𝜌. In this case, if we set 𝜋 = 𝑒 in (2.5), where 𝑒 is
the identity permutation, we see that the operator 𝒬(𝜌) = 𝜌⊗𝑚 is block-diagonalized in the Schur
basis.

Corollary 22. Given a 𝑑× 𝑑 density operator 𝜌,

𝑈Schur𝜌
⊗𝑚𝑈Schur =

∑︁
𝜇⊢𝑚
ℓ(𝜇)≤𝑑

|𝜇⟩⟨𝜇| ⊗ 1dim(𝜇) ⊗𝒬𝑑
𝜇(𝜌). (2.6)

The equality (2.6) shows that there is a unitary 𝑈Schur independent of the state 𝜌 which puts this
state in the block-diagonal form. We can therefore interpret the density matrix 𝑈Schur𝜌

⊗𝑚𝑈Schur

as corresponding to a mixed state with one element in the mixture for each block 𝜇. In this case,
measuring the block 𝜇 can be done without loss of generality, as it does not perturb the state. This
gives rise to the following measurement.

Definition 23 (Weak Schur sampling). Weak Schur sampling (WSS) refers to the projective mea-
surement {Π𝜇}𝜇⊢𝑚,ℓ(𝜇)≤𝑑 in which Π𝜇 projects onto the subspace specified by the partition 𝜇 in the
Schur basis.

The distribution of 𝜇 measured by WSS only depends on the spectrum of the state 𝜌. In fact,
if one is only interested learning some property of 𝜌’s spectrum, it can be shown that WSS is the
optimal measurement, and that further measuring within the 𝜇-irrep (e.g. measuring 𝒬𝑑

𝜇(𝜌)) yields
no additional information about 𝜌’s spectrum.

In the analysis of the MPS tester in Section 2.4, we will use the following expression for the
projector Π𝜇 using the characters 𝜒𝜇.

Theorem 24 (Weak Schur sampling projector, cf. [CHW07, Equation 7]). The weak Schur sampling
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projectors Π𝜇 can be expressed as

Π𝜇 = dim(𝜇) · E
𝜋∈S𝑚

[𝜒𝜇(𝜋)𝒫(𝜋)] . (2.7)

2.4 An algorithm for testing matrix product states

In this section we introduce the MPS tester. To begin, we introduce the rank tester of O’Donnell
and Wright [OW15], which is meant to test whether a mixed state 𝜌 is rank 𝑟. This refers to the
following problem.

Definition 25 (Rank testing). Given a mixed stated state 𝜌 ∈ C𝑑×𝑑, let 𝜌 =
∑︀𝑑

𝑖=1 𝛼𝑖 · |𝑢𝑖⟩⟨𝑢𝑖| be
its eigendecomposition, where 𝛼1 ≥ · · · ≥ 𝛼𝑑. Then 𝜌 is 𝛿-far from rank 𝑟 if 𝜆𝑟+1 + · · ·+ 𝜆𝑑 ≥ 𝛿.

An algorithm 𝒜 is a property tester for rank 𝑟 matrices using 𝑚 = 𝑚(𝑟, 𝛿) copies if, given 𝛿 > 0
and 𝑚 copies of 𝜌 ∈ C𝑑×𝑑, it acts as follows. If 𝜌 is rank-𝑟, then it accepts with probability at least
2
3 . (If instead it accepts with probability 1 in this case, we say that it has perfect completeness.)
And if 𝜌 is 𝛿-far from rank-𝑟, then it accepts with probability at most 1

3 .

The rank tester of [OW15] is motivated by the fact that if 𝜌 is indeed rank 𝑟, then weak Schur
sampling (as in Definition 23) always returns a Young diagram 𝜇 with ℓ(𝜇) ≤ 𝑟.

Definition 26 (The rank tester). Let 𝑟 ≥ 1. Given 𝜌⊗𝑛, the rank tester performs weak Schur
sampling and receives a random 𝜇. The rank tester accepts if ℓ(𝜇) ≤ 𝑟 and rejects otherwise.
Equivalently, it performs the two-outcome projective measurement {Π≤𝑟,1 − Π≤𝑟}, where Π≤𝑟 =∑︀

𝜇:ℓ(𝜇)≤𝑟 Π𝜇, and accepts if it observes the first outcome.

The next theorem states the copy complexity of the rank tester.

Theorem 27 ([OW15, Lemma 6.2]). The rank tester tests whether 𝜌 has rank 𝑟 with 𝑂(𝑟2/𝛿)
copies.

O’Donnell and Wright also show that the rank tester requires Ω(𝑟2/𝛿) copies [OW15, Lemma 6.2].
The rank tester has perfect completeness, and in fact it is the optimal algorithm for rank testing
with perfect completeness [OW15, Proposition 6.1]. However, among algorithms with imperfect
completeness, the best known lower bound states that Ω(𝑟/𝛿) are necessary [OW15, Theorem 1.11].
It remains an open question whether the rank tester is indeed the optimal algorithm for this task,
or whether it can be improved upon.

Now we state the MPS tester. It is motivated by the fact that |𝜓1,...,𝑛⟩ is in MPS(𝑟) if and only
if 𝜓1,...,𝑖 has rank 𝑟 for each 𝑖 ∈ [𝑛].

Definition 28 (The MPS tester). Given 𝑚 copies of the state |𝜓1,...,𝑛⟩ ∈ C𝑑1 ⊗ . . .⊗C𝑑𝑛, the MPS
tester acts as follows. For all 𝑖 ∈ [𝑛], it runs the rank tester on 𝜓⊗𝑚

1,...,𝑖. It accepts if each of them
accepts, and rejects otherwise.

Equivalently, for each 𝑖 ∈ [𝑛], let ℋ1,...𝑖 be the Hilbert space ℋ1,...𝑖 = C𝑑1 ⊗ · · · ⊗C𝑑𝑖 , and define
ℋ𝑖+1,...,𝑛 analogously. Let {Π≤𝑟,1,...,𝑖,1−Π≤𝑟,1,...,𝑖} be the rank tester’s measurement when performed
on ℋ⊗𝑚

1,...,𝑖. Then the MPS tester performs the two-outcome projective measurement {ΠMPS,1 −
ΠMPS}, where

ΠMPS =

𝑛∏︁
𝑖=1

(Π≤𝑟,1,...,𝑖 ⊗ 1ℋ⊗𝑚
𝑖+1,...,𝑛

),

and accepts if it observes the first outcome.
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Before analyzing the copy complexity of the MPS tester, we first show that it is well-defined.
In particular, we will show that the different rank tester measurements commute with each other,
which implies that they can be simultaneously measured and that {ΠMPS,1 − ΠMPS} is indeed
a two-outcome projective measurement, as claimed in Definition 28. We first prove the following
lemma, which shows that two overlapping weak Schur sampling measurements commute.

Lemma 29 (Overlapping weak Schur sampling commutes). Consider a bipartite system with Hilbert
space ℋ𝐿 ⊗ ℋ𝑅, where ℋ𝐿 = C𝑑𝐿 ,ℋ𝑅 = C𝑑𝑅 . Let {Π𝜆,𝐿} and {Π𝜇,𝐿𝑅} denote the weak Schur
sampling measurements when applied to ℋ⊗𝑚

𝐿 and ℋ⊗𝑚
𝐿𝑅 , respectively. Then these two measurements

commute, meaning that for any two partitions 𝜆 and 𝜇,

(Π𝜆,𝐿 ⊗ 1ℋ⊗𝑚
𝑅

) ·Π𝜇,𝐿𝑅 = Π𝜇,𝐿𝑅 · (Π𝜆,𝐿 ⊗ 1ℋ⊗𝑚
𝑅

).

Proof. Throughout this proof, we will omit the “1ℋ⊗𝑚
𝑅

” when writing Π𝜆,𝐿 ⊗ 1ℋ⊗𝑚
𝑅

or 𝒫𝐿 ⊗ 1ℋ⊗𝑚
𝑅

,
for simplicity.

First, we note that 𝒫𝐿(𝜋) · 𝒫𝐿𝑅(𝜎) = 𝒫𝐿𝑅(𝜎)𝒫𝐿(𝜎−1𝜋𝜎). To show this, let |ℓ1⟩, . . . , |ℓ𝑚⟩ be 𝑚
standard basis vectors in ℋ𝐿, and let |𝑟1⟩, . . . , |𝑟𝑚⟩ be 𝑚 standard basis vectors in ℋ𝑅. Then each
|ℓ𝑖⟩ ⊗ |𝑟𝑖⟩ is a standard basis vector in ℋ𝐿 ⊗ℋ𝑅, and so

𝒫𝐿(𝜋) · 𝒫𝐿𝑅(𝜎) · |ℓ1 · · · ℓ𝑚⟩ ⊗ |𝑟1 · · · 𝑟𝑚⟩
= 𝒫𝐿(𝜋) · |ℓ𝜎−1(1) · · · ℓ𝜎−1(𝑚)⟩ ⊗ |𝑟𝜎−1(1) · · · 𝑟𝜎−1(𝑚)⟩
= |ℓ𝜎−1(𝜋−1(1)) · · · ℓ𝜎−1(𝜋−1(𝑚))⟩ ⊗ |𝑟𝜎−1(1) · · · 𝑟𝜎−1(𝑚)⟩
= 𝒫𝐿𝑅(𝜎) · |ℓ𝜎−1(𝜋−1(𝜎(1))) · · · ℓ𝜎−1(𝜋−1(𝜎(𝑚)))⟩ ⊗ |𝑟1 · · · 𝑟𝑚⟩
= 𝒫𝐿𝑅(𝜎) · 𝒫𝐿(𝜎−1𝜋𝜎) · |ℓ1 · · · ℓ𝑚⟩ ⊗ |𝑟1 · · · 𝑟𝑚⟩.

Extending this to all of ℋ𝐿⊗ℋ𝑅 via linearity proves the equality. Next, we note that 𝜒𝜆(𝜎−1𝜋𝜎) =
𝜒𝜆(𝜋) because 𝜒𝜆(·) is a class function. Putting these together, we have

Π𝜆,𝐿Π𝜇,𝐿𝑅 = dim(𝜆) dim(𝜇) · E
𝜋,𝜎∼S𝑚

[𝜒𝜆(𝜋)𝜒𝜇(𝜎)𝒫𝐿(𝜋)𝒫𝐿𝑅(𝜎)]

= dim(𝜆) dim(𝜇) · E
𝜋,𝜎∼S𝑚

[︀
𝜒𝜆(𝜎

−1𝜋𝜎)𝜒𝜇(𝜎)𝒫𝐿𝑅(𝜎)𝒫𝐿(𝜎−1𝜋𝜎)
]︀

= dim(𝜆) dim(𝜇) · E
𝜋,𝜎∼S𝑚

[𝜒𝜆(𝜋)𝜒𝜇(𝜎)𝒫𝐿𝑅(𝜎)𝒫𝐿(𝜋)]

= Π𝜇,𝐿𝑅Π𝜆,𝐿,

where the third line uses the fact that 𝜎−1𝜋𝜎 is distributed as a uniformly random element of S𝑚,
even conditioned on the value of 𝜎. This completes the proof. ⊓⊔

As an immediate corollary, we get that the MPS tester is well-defined.

Proposition 30 (The MPS tester is well-defined). The matrices

Π≤𝑟,1,...,𝑖 ⊗ 1ℋ⊗𝑚
𝑖+1,...,𝑛

commute for all 𝑖 ∈ [𝑛]. As a result, the MPS tester measurement {ΠMPS,1 − ΠMPS} is a two-
outcome projective measurement.
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Now we analyze the copy complexity of the MPS tester. Because it runs a separate rank tester
on each cut of |𝜓1,...,𝑛⟩ simultaneously, the outcome of one rank tester can affect the rank of the
remaining cuts, and therefore the outcomes of the remaining rank testers. This complicates the
analysis of this collective set of measurements. Instead, we will do a pessimistic analysis and just
show that the MPS tester does well on at least one cut. This analysis uses the following proposition.

Proposition 31 (Far from MPS implies a cut is far from low-rank). Suppose |𝜓1,...,𝑛⟩ is 𝛿-far from
MPS(𝑟). Then there exists an 𝑖 ∈ [𝑛− 1] such that 𝜓1,...,𝑖 is (𝛿2/2𝑛)-far from rank-𝑟.

Proof. Dist𝑟(|𝜓1,...,𝑛⟩) ≥ 𝛿 implies Overlap𝑟(|𝜓1,...,𝑛⟩) ≤ 1 − 𝛿2. By Lemma 19, there exists a state
|𝜑⟩ ∈ MPS(𝑟) such that

|⟨𝜑|𝜓⟩| ≥ 1−
𝑛−1∑︁
𝑖=1

𝐷𝑖∑︁
𝑗=𝑟+1

𝜆
(𝑖)
𝑗 .

Then |⟨𝜑|𝜓⟩| ≤
√
1− 𝛿2 ≤ 1− 𝛿2/2. Rearranging, we have

𝛿2/2 ≤ 1−
√︀

1− 𝛿2 ≤ 1− |⟨𝜑|𝜓⟩| ≤
𝑛−1∑︁
𝑖=1

𝐷𝑖∑︁
𝑗=𝑟+1

𝜆
(𝑖)
𝑗 ≤ 𝑛 · max

𝑖∈[𝑛−1]

⎧⎨⎩
𝐷𝑖∑︁

𝑗=𝑟+1

𝜆
(𝑖)
𝑗

⎫⎬⎭ .

Letting 𝑖 be the maximizing coordinate, this implies that 𝜓1,...,𝑖 is (𝛿2/2𝑛)-far from rank-𝑟, which
completes the proof. ⊓⊔

There are two ways that Proposition 31 “loses” in going from |𝜓1,...,𝑛⟩ being 𝛿-far to 𝜓1,...,𝑖 being
(𝛿2/2𝑛)-far. The first is the factor of 1/𝑛 which is unavoidable since we are ignoring all but one cut.
The second “loss” is the fact that 𝛿 is squared in the conclusion. However, this turns out to just
be a quirk in the different ways we measure distance to MPS and distance to rank-𝑟. For example,
even for a bipartite state |𝜓1,2⟩, Lemma 18 tells us that |𝜓1,2⟩ is 𝛿-far from MPS(𝑟) if and only if
𝜓1 is 𝛿2-far from rank-𝑟.

Now we prove the main theorem of this section.

Theorem 32. Given 𝑚 = 𝑂(𝑛𝑟2/𝛿2) copies of a state |𝜓1,...,𝑛⟩ ∈ C𝑑1 ⊗ . . . ⊗ C𝑑𝑛, the MPS tester
tests whether |𝜓⟩ is in MPS(𝑟) with perfect completeness.

Proof. If |𝜓1,...,𝑛⟩ is in MPS(𝑟), then 𝜓1,...,𝑖 is rank-𝑟 for each 𝑖 ∈ [𝑛]. As a result, the rank tester
applied to each cut always accepts because the rank tester has perfect completeness, and so the
MPS tester always accepts. On the other hand, if 𝜌 is 𝛿-far from MPS(𝑟), then Proposition 31
implies there exists an 𝑖 ∈ [𝑛− 1] such that 𝜓1,...,𝑖 is 𝛿′ = (𝛿2/2𝑛)-far from rank 𝑟. The probability
the MPS tester accepts |𝜓1,...,𝑛⟩ is at most the probability the rank tester accepts 𝜓1,...,𝑖, and since
we are using 𝑂(𝑛𝑟2/𝛿2) = 𝑂(𝑟2/𝛿′) copies, the rank tester will accept with probability at most 1

3 .
Thus, the MPS tester tests whether |𝜓1,...,𝑛⟩ is in MPS(𝑟), and this completes the proof. ⊓⊔
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2.5 A lower bound for testing matrix product states

We now derive a lower bound on the sample complexity of testing whether a state is in MPS(𝑟), for
𝑟 ≥ 2. Let 𝑑 ≥ 0 satisfy 𝑑− 1 ≥ 2 · (𝑟− 1), and consider the bipartite state |𝜙⟩ ∈ C𝑑⊗C𝑑 defined as

|𝜙⟩ =
√
1− 𝜃 · |1⟩|1⟩+

𝑑∑︁
𝑖=2

√︂
𝜃

𝑑− 1
· |𝑖⟩|𝑖⟩,

where 0 ≤ 𝜃 ≤ 1 is a parameter that we set later. By the Young-Eckart Theorem (Lemma 18),

Overlap𝑟(|𝜙⟩) = (1− 𝜃) + (𝑟 − 1) · 𝜃

𝑑− 1
.

Let 𝑛 be an even integer, and define
|Φ𝑛⟩ = |𝜙⟩⊗𝑛

2 .

To compute the overlap of |Φ𝑛⟩ with MPS(𝑟), we use the following proposition.

Proposition 33 (Overlap of tensor products). Let |𝜙⟩ ∈ C𝑑1 ⊗ · · · ⊗ C𝑑𝑘 be a 𝑘-partite state with
Overlap𝑟(|𝜙⟩) = 𝜔. Then for each ℓ ≥ 1, Overlap𝑟(|𝜙⟩⊗ℓ) = 𝜔ℓ.

Proof. Let |𝜓⟩ be the state in MPS𝑘(𝑟) with |⟨𝜓|𝜙⟩|2 = 𝜔 guaranteed by the assumption. Then
|𝜓⟩⊗ℓ is in MPSℓ𝑘(𝑟) and has |⟨𝜓|⊗ℓ · |𝜙⟩⊗ℓ|2 = |⟨𝜓|𝜙⟩|2ℓ = 𝜔ℓ. This proves the lower-bound
Overlapℓ𝑘(|𝜓⟩⊗ℓ) ≥ 𝜔ℓ,

As for the upper-bound, the proof is by induction on ℓ, the base case being trivial. For the
inductive step, write |𝜙ℓ⟩ as shorthand for |𝜙⟩⊗ℓ, and suppose that the inductive hypothesis holds
for |𝜙ℓ⟩, i.e. that Overlap𝑟(|𝜙ℓ⟩) ≤ 𝜔ℓ. Then we show that

∀|𝛽⟩ ∈ MPS(ℓ+1)𝑘(𝑟), |⟨𝜙ℓ+1|𝛽⟩|2 ≤ 𝜔ℓ+1.

Since |𝜙ℓ+1⟩ = |𝜙ℓ⟩ ⊗ |𝜙⟩, this is equivalent to proving that for all |𝛽⟩ ∈ MPS(ℓ+1)𝑘(𝑟),

⟨𝜙ℓ+1|𝛽⟩⟨𝛽|𝜙ℓ+1⟩ = ⟨𝜙| · (⟨𝜙ℓ| ⊗ 1) · |𝛽⟩⟨𝛽| · (|𝜙ℓ⟩ ⊗ 1) · |𝜙⟩
= |||Γ⟩||2 · |⟨𝜙|̃︀Γ⟩|2 ≤ 𝜔ℓ+1, (2.8)

where we define

|Γ⟩ = (⟨𝜙ℓ| ⊗ 1) · |𝛽⟩, |̃︀Γ⟩ = |Γ⟩
|||Γ⟩|| . (2.9)

From here, our proof of (2.8) breaks into two steps: step 1, showing that |||Γ⟩||2 ≤ 𝜔ℓ, and step 2,
showing that |⟨𝜙|̃︀Γ⟩|2 ≤ 𝜔. We begin with the former.

Step 1: bounding |||Γ⟩||2. Let the Schmidt decomposition of the state |𝛽⟩ ∈ MPS(ℓ+1)𝑘(𝑟) across
the subsystems {1, . . . , ℓ𝑘} and {ℓ𝑘 + 1, · · · , (ℓ + 1)𝑘} be |𝛽⟩ =

∑︀𝑟
𝑖=1

√
𝜇𝑖|𝑒𝑖⟩|𝑓𝑖⟩. Then |Γ⟩ =∑︀𝑟

𝑖=1

√
𝜇𝑖⟨𝜙ℓ|𝑒𝑖⟩|𝑓𝑖⟩, and

|||Γ⟩||2 =
𝑟∑︁
𝑖=1

𝜇𝑖|⟨𝜙ℓ|𝑒𝑖⟩|2.
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Suppose it holds that |𝑒𝑖⟩ is in MPSℓ𝑘(𝑟), for each 𝑖. Then the inductive hypothesis implies that

|||Γ⟩||2 ≤
𝑟∑︁
𝑖=1

𝜇𝑖𝜔
ℓ = 𝜔ℓ,

which is the desired bound on |||Γ⟩||2. It remains to show that |𝑒𝑖⟩ ∈ MPSℓ𝑘(𝑟). Consider partitioning
the (ℓ + 1)𝑘 subsystems into {1, . . . , 𝑞} and {𝑞 + 1, . . . , (ℓ + 1)𝑘} for any integer 1 ≤ 𝑞 ≤ ℓ𝑘. We
have

tr𝑞+1,...,(ℓ+1)𝑘 |𝛽⟩⟨𝛽| = tr𝑞+1,...,(ℓ+1)𝑘

⎡⎣ 𝑟∑︁
𝑖,𝑗=1

√
𝜇𝑖𝜇𝑗 |𝑒𝑖⟩⟨𝑒𝑗 | ⊗ |𝑓𝑖⟩⟨𝑓𝑗 |

⎤⎦
=

𝑟∑︁
𝑖,𝑗=1

√
𝜇𝑖𝜇𝑗 · tr𝑞+1,...,(𝑘+1)ℓ [|𝑒𝑖⟩⟨𝑒𝑗 | ⊗ |𝑓𝑖⟩⟨𝑓𝑗 |]

=
𝑟∑︁
𝑖=1

𝜇𝑖 · tr𝑞+1,...,𝑘ℓ |𝑒𝑖⟩⟨𝑒𝑖|. (2.10)

Equation (2.10) is a sum of PSD operators and rank does not decrease by adding such operators.
Since |𝛽⟩ ∈ MPS(ℓ+1)𝑘(𝑟), we have tr𝑞+1,...,(ℓ+1)𝑘 |𝛽⟩⟨𝛽| ≤ 𝑟. For this to happen, the rank of each of
the terms in Equation (2.10) must also be ≤ 𝑟. This implies |𝑒𝑖⟩ ∈ MPSℓ𝑘(𝑟), as we claimed.

Step 2: bounding |⟨𝜙|̃︀Γ⟩|2. By the base case of the induction, Overlap𝑟(|𝜙⟩) ≤ 𝜔. Thus, to complete
step 2, it is sufficient to show that |̃︀Γ⟩ is in MPS𝑘(𝑟). Let𝐷 = (𝑑1 · · · 𝑑𝑘)ℓ, and let |𝐴1⟩, |𝐴2⟩, . . . , |𝐴𝐷⟩
be an orthonormal basis for the first ℓ𝑘 qudits such that |𝐴1⟩ = |𝜙ℓ⟩. In addition, let 𝑖 ∈ {1, . . . , 𝑘}.
By tracing out the first ℓ𝑘 + 𝑖 qudits in the state |𝛽⟩ ∈ MPS(ℓ+1)𝑘(𝑟) we get

tr1,...,ℓ𝑘+𝑖 |𝛽⟩⟨𝛽| = trℓ𝑘+1,...,ℓ𝑘+𝑖

⎡⎣∑︁
𝑖∈[𝐷]

(⟨𝐴𝑖| ⊗ 1) · |𝛽⟩⟨𝛽| · (|𝐴𝑖⟩ ⊗ 1)

⎤⎦ . (2.11)

By the definition of |Γ⟩ in (2.9) and our choice of the state |𝐴1⟩, the 𝑖 = 1 part of this sum is

trℓ𝑘+1,...,ℓ𝑘+𝑖

[︁
(⟨𝜙ℓ| ⊗ 1) · |𝛽⟩⟨𝛽| · (|𝜙ℓ⟩ ⊗ 1)

]︁
= tr1,...,𝑖 |Γ⟩⟨Γ|.

Since |𝛽⟩ is in MPS(ℓ+1)𝑘(𝑟), tr1,...,ℓ𝑘+𝑖 |𝛽⟩⟨𝛽| has rank at most 𝑟. But Equation (2.11) is a sum of
PSD operators, so in order to have trℓ𝑘+𝑖 |𝛽⟩⟨𝛽| be rank ≤ 𝑟, the 𝑖 = 1 part of the sum in Equation
(2.11) must also be rank ≤ 𝑟. This implies that tr1,...,𝑖 |Γ⟩⟨Γ|, and therefore also tr1,...,𝑖 |̃︀Γ⟩⟨̃︀Γ|, is
rank 𝑟. As a result, |̃︀Γ⟩ ∈ MPS𝑘(𝑟), which concludes the proof. ⊓⊔

Applying Proposition 33 to |Φ𝑛⟩, we can compute its overlap as

Overlap𝑟(|Φ𝑛⟩) =
(︂
(1− 𝜃) + (𝑟 − 1) · 𝜃

𝑑− 1

)︂𝑛/2
≤
(︂
1− 𝜃

2

)︂𝑛/2
,
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where the first inequality uses 𝑑− 1 ≥ 2 · (𝑟 − 1). Now if we pick 𝜃 to be

𝜃 =
8𝛿2

𝑛
, (2.12)

we get (︂
1− 4𝛿2

𝑛

)︂𝑛/2
≤ 1− 𝛿2,

for 𝛿 ≤ 1√
2
, where we have used the inequality (1 − 𝑥)𝑛 ≤ 1 − 1

2𝑥𝑛 for 𝑥 ≤ 1
𝑛 . As a result, the

distance of |Φ𝑛⟩ to MPS(𝑟) is

Dist𝑟(|Φ𝑛⟩) =
√︀
1−Overlap𝑟(|Φ𝑛⟩) ≥ 𝛿.

Therefore, |Φ𝑛⟩ is far from MPS(𝑟), and any MPS(𝑟) testing algorithm should reject it with prob-
ability at least 2

3 . (Note that because 0 ≤ 𝜃 ≤ 1, we must have 8𝛿2/𝑛 ≤ 1, which is satisfied if
𝑛 ≥ 4.)

Our hard family of states which are far from MPS(𝑟) will consist of |Φ𝑛⟩ and any state which can
be computed from |Φ𝑛⟩ by a local unitary. To make this formal, consider the ensemble of pure states
in which a random element is sampled as follows: first, sample 𝑈1, . . . ,𝑈𝑛/2,𝑉 1, . . . ,𝑉 𝑛/2 ∼ U𝑑,
i.e. 𝑛 Haar random 𝑑× 𝑑 unitary matrices, and output

(𝑈1 ⊗ 𝑉 1)⊗ · · · ⊗ (𝑈𝑛/2 ⊗ 𝑉 𝑛/2) · |Φ𝑛⟩.

Local unitaries do not affect the distance to MPS(𝑟), and so each state in this ensemble is distance 𝛿
from MPS(𝑟). Thus, if a tester is given 𝑚 copies of any of these states, it should reject with
probability at least 2

3 . As a result, it should also reject with probability at least 2
3 if given the

density matrix

𝜌far = E
(︁
(𝑈1 ⊗ 𝑉 1)⊗ · · · ⊗ (𝑈𝑛/2 ⊗ 𝑉 𝑛/2) · |Φ𝑛⟩⟨Φ𝑛| · (𝑈 †

1 ⊗ 𝑉 †
1)⊗ · · · ⊗ (𝑈 †

𝑛/2 ⊗ 𝑉 †
𝑛/2)

)︁⊗𝑚
corresponding to 𝑚 copies of a random state drawn from this ensemble. We will show that this
is difficult for an MPS(𝑟) tester unless 𝑚 is sufficiently large. To do this, we will show that there
exists another density matrix 𝜌MPS corresponding to a mixture over states in MPS(𝑟) such that the
trace distance between 𝜌MPS and 𝜌far is small unless 𝑚 is sufficiently large. To define 𝜌MPS, let us
first define the state

|𝛾⟩ =
√
1− 𝜃 · |1⟩|1⟩+

𝑟∑︁
𝑖=2

√︂
𝜃

𝑟 − 1
· |𝑖⟩|𝑖⟩,

and the state |Γ𝑛⟩ = |𝛾⟩⊗𝑛/2. The state |𝛾⟩ is an element of MPS(𝑟), and therefore so is |Γ𝑛⟩. Then
we define

𝜌MPS = E
(︁
(𝑈1 ⊗ 𝑉 1)⊗ · · · ⊗ (𝑈𝑛/2 ⊗ 𝑉 𝑛/2) · |Γ𝑛⟩⟨Γ𝑛| · (𝑈 †

1 ⊗ 𝑉 †
1)⊗ · · · ⊗ (𝑈 †

𝑛/2 ⊗ 𝑉 †
𝑛/2)

)︁⊗𝑚
.

Each state in this ensemble is in MPS(𝑟), and so if a tester is given this density matrix, it should
accept with probability at least 2

3 . Our main result is as follows.

Theorem 34. (Lower bound on copy complexity of MPS testing) Suppose there is an algorithm
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that accepts 𝜌MPS with probability at least 2
3 and accepts 𝜌far with probability at most 1

3 . Then
𝑚 = Ω(

√
𝑛/𝛿2).

As a result, Ω(
√
𝑛/𝛿2) copies are necessary to test whether a state is in MPS(𝑟) for 𝛿 ≤ 1√

2
.

Proof. Our goal is to bound Dtr(𝜌far, 𝜌MPS). To do so, it is convenient to also work with the
fidelity of these states. Recall that the fidelity 𝐹 (𝛼, 𝛽) of two mixed states 𝛼, 𝛽 is defined by
𝐹 (𝛼, 𝛽) = ||√𝛼√𝛽||1. One useful property of this measure is that it is multiplicative with respect
to tensor products, i.e. 𝐹 (𝛼1 ⊗ 𝛼2, 𝛽1 ⊗ 𝛽2) = 𝐹 (𝛼1, 𝛽1)𝐹 (𝛼2, 𝛽2). Another is the bound

1− 𝐹 (𝛼, 𝛽) ≤ Dtr(𝛼, 𝛽) ≤
√︀
1− 𝐹 (𝛼, 𝛽)2 (2.13)

between the trace distance Dtr(𝛼, 𝛽) and the fidelity 𝐹 (𝛼, 𝛽), which we can use to switch back and
forth between these two measures.

We begin by applying the upper-bound in (2.13) to switch to fidelity:

Dtr(𝜌far, 𝜌MPS) ≤
√︀
1− 𝐹 (𝜌far, 𝜌MPS)2.

Hence, to upper-bound the trace distance between two states, it is sufficient to lower-bound their
fidelity. We note that since |Φ𝑛⟩ = |𝜙⟩⊗𝑛/2, we can rewrite the state 𝜌far as

𝜌far =

(︂
E

𝑈 ,𝑉 ∼U𝑑

(𝑈 ⊗ 𝑉 · |𝜙⟩⟨𝜙| ·𝑈 † ⊗ 𝑉 †)⊗𝑚
)︂⊗𝑛/2

=: 𝜎
⊗𝑛/2
far .

By similar reasoning, we can rewrite 𝜌MPS as

𝜌MPS =

(︂
E

𝑈 ,𝑉 ∼U𝑑

(𝑈 ⊗ 𝑉 · |𝛾⟩⟨𝛾| ·𝑈 † ⊗ 𝑉 †)⊗𝑚
)︂⊗𝑛/2

=: 𝜎
⊗𝑛/2
MPS

Hence, by the multiplicativity of fidelity, we have

𝐹 (𝜌far, 𝜌MPS) = 𝐹 (𝜎far, 𝜎MPS)
𝑛/2.

Now, by applying (2.13) again to switch back to trace distance, we have

𝐹 (𝜎far, 𝜎MPS) ≥ 1−Dtr(𝜎far, 𝜎MPS).

As a result, we would like to upper-bound the trace distance of 𝜎far and 𝜎MPS.
Consider an algorithm trying to distinguish these two states. For 𝑖 ∈ {1, . . . , 𝑑}, let |𝑎𝑖⟩ = 𝑈 |𝑖⟩

and let |𝑏𝑖⟩ = 𝑉 |𝑖⟩. Then when the algorithm is given 𝜎far, we can equivalently view it as the
algorithm being given 𝑚 copies of the random sample

√
1− 𝜃 · |𝑎1⟩|𝑏1⟩+

𝑑∑︁
𝑖=2

√︂
𝜃

𝑑− 1
· |𝑎𝑖⟩|𝑏𝑖⟩,

and when it is given 𝜎MPS, we can equivalently view it as being given 𝑚 copies of the random sample

√
1− 𝜃 · |𝑎1⟩|𝑏1⟩+

𝑟∑︁
𝑖=2

√︂
𝜃

𝑟 − 1
· |𝑎𝑖⟩|𝑏𝑖⟩.
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The only difference between these two mixtures is whether the state has Schmidt coefficients 1 −
𝜃, 𝜃/(𝑑 − 1), . . . , 𝜃/(𝑑 − 1) or Schmidt coefficients 1 − 𝜃, 𝜃/(𝑟 − 1), . . . , 𝜃/(𝑟 − 1). As we show
in Theorem 35, this means that the algorithm learns everything it needs to learn about which
case it is in simply by measuring the 𝑚 |𝑎𝑖⟩ registers, and it can ignore the 𝑚 |𝑏𝑖⟩ registers. In
other words, if we set

𝜏far = tr2 |𝜙⟩⟨𝜙| = (1− 𝜃) · |1⟩⟨1|+ 𝜃 ·
𝑑∑︁
𝑖=2

1

𝑑− 1
· |𝑖⟩⟨𝑖|

and

𝜏MPS = tr2 |𝛾⟩⟨𝛾| = (1− 𝜃) · |1⟩⟨1|+ 𝜃 ·
𝑟∑︁
𝑖=2

1

𝑟 − 1
· |𝑖⟩⟨𝑖|,

then
Dtr(𝜎far, 𝜎MPS) = Dtr

(︂
E

𝑈∼U𝑑

(𝑈𝜏far𝑈
†)⊗𝑚, E

𝑈∼U𝑑

(𝑈𝜏MPS𝑈
†)⊗𝑚

)︂
.

The density matrix E𝑈∼U𝑑
(𝑈𝜏far𝑈

†)⊗𝑚 can be described by the following mixture. Let
|𝑎1⟩, . . . , |𝑎𝑑⟩ be a random orthonormal basis for C𝑑 as above. Draw 𝑚 samples as follows.

(i) With probability 1− 𝜃, output |𝑎1⟩.

(ii) With probability 𝜃, output one of the states |𝑎2⟩, . . . , |𝑎𝑑⟩ uniformly at random.

The state E𝑈∼U𝑑
(𝑈𝜏MPS𝑈

†)⊗𝑚 can be described by a similar mixture except that now in step
(ii), with probability 𝜃, the output is one of the states |𝑎2⟩, . . . , |𝑎𝑟⟩ chosen uniformly at random.
Consider the event that either all the 𝑚 draws are from step (i) or 𝑚 − 1 draws are from step
(i) and the remaining sample is from step (ii). The probability of this event occurring is simply
(1− 𝜃)𝑚+𝑚 𝜃(1− 𝜃)𝑚−1. In both of these cases, it is not possible to distinguish the two states. In
all the other cases, where more than one sample is drawn according to step (ii), we loosely upper
bound the distance between the states by 1. This gives us the following overall upper bound on the
distance between the random ensembles:

Dtr

(︂
E

𝑈∼U𝑑

(𝑈𝜏far𝑈
†)⊗𝑚, E

𝑈∼U𝑑

(𝑈𝜏MPS𝑈
†)⊗𝑚

)︂
≤ 1− (1− 𝜃)𝑚 −𝑚𝜃(1− 𝜃)𝑚−1

≤ 1− (1−𝑚𝜃)−𝑚𝜃 (1− (𝑚− 1)𝜃)

= 𝑚(𝑚− 1)𝜃2.

As a result, this implies that 𝜌far and 𝜌MPS have distance

Dtr(𝜌far, 𝜌MPS) ≤
(︀
1−

(︀
1−𝑚(𝑚− 1)𝜃2

)︀𝑛)︀1/2
≤
(︀
1−

(︀
1− 𝑛 ·𝑚(𝑚− 1)𝜃2

)︀)︀1/2
≤ √

𝑛𝑚𝜃.

By our choice of 𝜃 = 8𝛿2/𝑛 in Equation (2.12), this is at most 4𝑚𝛿2/
√
𝑛. For an algorithm to accept

𝜌MPS with probability at least 2
3 and 𝜌far with probability at most 1

3 , this trace distance must be at
least 1

3 . This implies that 𝑚 must be at least 1
24

√
𝑛/𝛿2, which completes the proof. ⊓⊔
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Here we prove the claim in the proof of Theorem 34 that it suffices for any algorithm that tries
to distinguish between the states 𝜎MPS and 𝜎far to only measure their 𝑚 |𝑎𝑖⟩ registers. The proof
is standard and based on repeated applications of Schur’s Lemma.

Theorem 35. Let |𝜙⟩𝐴𝐵 and |𝛾⟩𝐴𝐵 be two bipartite states on subsystems 𝐴 and 𝐵. Any algorithm
for distinguishing between the two mixed states

E
𝑈𝐴∼U𝑑,𝑉 𝐵∼U𝑑

(︁
𝑈𝐴 ⊗ 𝑉 𝐵 · |𝜙⟩⟨𝜙| ·𝑈 †

𝐴 ⊗ 𝑉 †
𝐵

)︁⊗𝑚
(2.14)

and

E
𝑈𝐴∼U𝑑,𝑉 𝐵∼U𝑑

(︁
𝑈𝐴 ⊗ 𝑉 𝐵 · |𝛾⟩⟨𝛾| ·𝑈 †

𝐴 ⊗ 𝑉 †
𝐵

)︁⊗𝑚
(2.15)

can without loss of generality leave out the 𝑚 𝐵 registers and only measure the 𝑚 𝐴 registers.

We denote the Schur-Weyl basis for (C𝑑)⊗𝑚 (see Theorem 21) by |𝜇⟩|𝑞⟩|𝑝⟩, where 𝑞 is a basis
vector for the 𝜇-irrep 𝒬𝑑

𝜇 of U𝑑 and 𝑝 is a basis vector for the 𝜇-irrep 𝒫𝜇 of S𝑑. One technicality
is that although any orthonormal basis {|𝑞⟩}𝑞 of 𝒬𝑑

𝜇 will suffice for our purposes, we will need to
pick a basis {|𝑝⟩}𝑝 of 𝒫𝜇 such that the matrix entries of 𝒫𝜇(𝜋) are real-valued for each 𝜋 ∈ S𝑑.
(This is used to establish Equation (2.20) below.) One basis that satisfies this property is known as
the Gelfand-Tsetlin basis, and the resulting matrices {𝒫𝜇(𝜋)}𝜋∈S𝑑 give rise to Young’s orthogonal
representation. In this basis, the matrix elements 𝒫𝜇(𝜋)𝑝,𝑝′ := ⟨𝑝|𝒫𝜇(𝜋)|𝑝′⟩ are real-valued, and
so each matrix 𝒫𝜇(𝜋) is an orthogonal matrix. For an introduction to the Gelfand-Tsetlin basis,
see [HGG09, Appendix B] and the citations contained therein.

Before proving Theorem 35, we show some helper lemmas.

Lemma 36. Let ℋ = (C𝑑)⊗𝑚, and let ℋ′ be another Hilbert space. Consider a matrix 𝑁 acting on
ℋ⊗ℋ′ of the form

𝑁 =
∑︁
𝜇,𝜇′

𝑞,𝑞′

|𝜇⟩⟨𝜇′| ⊗ |𝑞⟩⟨𝑞′| ⊗𝑁𝜇,𝜇′,𝑞,𝑞′ , (2.16)

where 𝑁𝜇,𝜇′,𝑞,𝑞′ is an operator acting on ℋ′ and the |𝑝⟩ register of ℋ. Then it holds that

E
𝑈∼U𝑑

(︁
𝑈⊗𝑚 ·𝑁 · (𝑈†)⊗𝑚

)︁
=
∑︁
𝜇

|𝜇⟩⟨𝜇| ⊗ 1⊗𝑁𝜇, (2.17)

where 𝑁𝜇 is an operator acting on ℋ′ and the |𝑝⟩ register of ℋ.

Proof. To begin, we calculate

E
𝑈∼U𝑑

(︁
𝑈⊗𝑚 ·𝑁 · (𝑈†)⊗𝑚

)︁
=
∑︁
𝜇,𝜇′

𝑞,𝑞′

|𝜇⟩⟨𝜇′| ⊗
(︂

E
𝑈∼U𝑑

𝒬𝑑
𝜇(𝑈) · |𝑞⟩⟨𝑞′| · 𝒬𝑑

𝜇′(𝑈)†
)︂
⊗𝑁𝜇,𝜇′,𝑞,𝑞′ . (2.18)

For each 𝜇, 𝜇′, 𝑞, 𝑞′, the matrix

𝑇𝜇,𝜇′,𝑞,𝑞′ = E
𝑈∼U𝑑

[𝒬𝑑
𝜇(𝑈) · |𝑞⟩⟨𝑞′| · 𝒬𝑑

𝜇′(𝑈)†]
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is an intertwining operator operator for 𝒬𝑑
𝜇 and 𝒬𝑑

𝜇′ , because for each 𝑉 ∈ U𝑑,

𝒬𝑑
𝜇(𝑉 ) · 𝑇𝜇,𝜇′,𝑞,𝑞′ = 𝒬𝑑

𝜇(𝑉 ) · E
𝑈∼U𝑑

[𝒬𝑑
𝜇(𝑈) · |𝑞⟩⟨𝑞′| · 𝒬𝑑

𝜇′(𝑈)†]

= E
𝑈∼U𝑑

[𝒬𝑑
𝜇(𝑉𝑈) · |𝑞⟩⟨𝑞′| · 𝒬𝑑

𝜇′(𝑈)†]

= E
𝑊∼U𝑑

[𝒬𝑑
𝜇(𝑊 ) · |𝑞⟩⟨𝑞′| · 𝒬𝑑

𝜇′(𝑉
†𝑊 )†]

= E
𝑊∼U𝑑

[𝒬𝑑
𝜇(𝑊 ) · |𝑞⟩⟨𝑞′| · 𝒬𝑑

𝜇′(𝑊 )†] · 𝒬𝑑
𝜇′(𝑉 )

= 𝑇𝜇,𝜇′,𝑞,𝑞′ · 𝒬𝑑
𝜇′(𝑉 ).

As a result, Schur’s lemma states that 𝑇𝜇,𝜇′,𝑞,𝑞′ is zero when 𝜇 ̸= 𝜇′, and a multiple of the identity
𝑐𝜇,𝑞,𝑞′ · 1 when 𝜇 = 𝜇′. Indeed, we may compute 𝑐𝜇,𝑞,𝑞′ exactly as

𝑐𝜇,𝑞,𝑞′ =
1

dim(𝒬𝑑
𝜇)

· tr[𝑇𝜇,𝜇,𝑞,𝑞′ ] =
1

dim(𝒬𝑑
𝜇)

· E
𝑈∼U𝑑

[tr[𝒬𝑑
𝜇(𝑈) · |𝑞⟩⟨𝑞′| · 𝒬𝑑

𝜇(𝑈)†]]

=
1

dim(𝒬𝑑
𝜇)

· E
𝑈∼U𝑑

[⟨𝑞′| · 𝒬𝑑
𝜇(𝑈)†𝒬𝑑

𝜇(𝑈) · |𝑞⟩]

=
1

dim(𝒬𝑑
𝜇)

· E
𝑈∼U𝑑

[⟨𝑞′|𝑞⟩] =
{︂

1/dim(𝒬𝑑
𝜇) if 𝑞 = 𝑞′,

0 otherwise.

Overall, then, 𝑇𝜇,𝜇′,𝑞,𝑞′ is (1/ dim(𝒬𝑑
𝜇)) · 1 if 𝜇 = 𝜇′ and 𝑞 = 𝑞′ and zero otherwise. Thus,

(2.18) =
∑︁
𝜇,𝑞

|𝜇⟩⟨𝜇| ⊗
(︁ 1

dim(𝒬𝑑
𝜇)

· 1
)︁
⊗𝑁𝜇,𝜇,𝑞,𝑞 =

∑︁
𝜇

|𝜇⟩⟨𝜇| ⊗ 1⊗
(︁ 1

dim(𝒬𝑑
𝜇)

·
∑︁
𝑞

𝑁𝜇,𝜇,𝑞,𝑞

)︁
.

The lemma follows by taking 𝑁𝜇 = (1/ dim(𝒬𝑑
𝜇)) ·

∑︀
𝑞𝑁𝜇,𝜇,𝑞,𝑞. ⊓⊔

Lemma 37 (EPR state in an irrep). Given 𝜇 ⊢ 𝑚, we define the EPR state corresponding to the
permutation irrep 𝒫𝜇 as

|EPR𝜇⟩ =
1√︀

dim(𝜇)
·
∑︁
𝑝

|𝑝⟩ ⊗ |𝑝⟩,

where the sum ranges over basis vectors of 𝒫𝜇. Then

E
𝜋∼S𝑑

[𝒫𝐴(𝜋)⊗ 𝒫𝐵(𝜋)] =
∑︁
𝜇

|𝜇⟩⟨𝜇|𝐴 ⊗ |𝜇⟩⟨𝜇|𝐵 ⊗ 1𝐴 ⊗ 1𝐵 ⊗ |EPR𝜇⟩⟨EPR𝜇|𝐴,𝐵,

where the two identity matrices act on the |𝑞⟩ registers of Hilbert spaces 𝐴 and 𝐵.

Proof. We begin by calculating

E
𝜋∼S𝑑

[𝒫𝜇𝐴(𝜋)⊗ 𝒫𝜇𝐵 (𝜋)] =
∑︁
𝑝𝐴,𝑝

′
𝐴

𝑝𝐵 ,𝑝
′
𝐵

|𝑝𝐴⟩⟨𝑝′𝐴| ⊗ |𝑝𝐵⟩⟨𝑝′𝐵| · E
𝜋∼S𝑑

[𝒫𝜇𝐴(𝜋)𝑝𝐴,𝑝′𝐴 · 𝒫𝜇𝐵 (𝜋)𝑝𝐵 ,𝑝′𝐵 ]. (2.19)
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The Schur orthogonality relations state that

E
𝜋∼S𝑑

[𝒫𝜇𝐴(𝜋)†𝑝𝐴,𝑝′𝐴 · 𝒫𝜇𝐵 (𝜋)𝑝𝐵 ,𝑝′𝐵 ] =
{︂

1/ dim(𝜇𝐴) if 𝜇𝐴 = 𝜇𝐵, 𝑝𝐴 = 𝑝𝐵, and 𝑝′𝐴 = 𝑝′𝐵,
0 otherwise.

Recall that we have chosen our basis of 𝒫𝜇 so that 𝒫𝜇(𝜋) is a real-valued (orthogonal) matrix for
each 𝜋 ∈ S𝑑. Then

𝒫𝜇𝐴(𝜋)†𝑝𝐴,𝑝′𝐴 = 𝒫𝜇𝐴(𝜋)𝑝𝐴,𝑝′𝐴 ,

and so

E
𝜋∼S𝑑

[𝒫𝜇𝐴(𝜋)𝑝𝐴,𝑝′𝐴 · 𝒫𝜇𝐵 (𝜋)𝑝𝐵 ,𝑝′𝐵 ] =
{︂

1/ dim(𝜇𝐴) if 𝜇𝐴 = 𝜇𝐵, 𝑝𝐴 = 𝑝𝐵, and 𝑝′𝐴 = 𝑝′𝐵,
0 otherwise. (2.20)

As a result, (2.19) is zero if 𝜇𝐴 ̸= 𝜇𝐵, and

(2.19) =
1

dim(𝜇𝐴)
·
∑︁
𝑝,𝑝′

|𝑝⟩⟨𝑝′| ⊗ |𝑝⟩⟨𝑝′| = |EPR𝜇𝐴⟩⟨EPR𝜇𝐴 |.

if 𝜇𝐴 = 𝜇𝐵. This allows us to express

E
𝜋∼S𝑑

[𝒫𝐴(𝜋)⊗ 𝒫𝐵(𝜋)] =
∑︁
𝜇𝐴,𝜇𝐵

|𝜇𝐴⟩⟨𝜇𝐴| ⊗ |𝜇𝐵⟩⟨𝜇𝐵| ⊗ 1⊗ 1⊗ E
𝜋∼S𝑑

[𝒫𝜇𝐴(𝜋)⊗ 𝒫𝜇𝐵 (𝜋)]

=
∑︁
𝜇

|𝜇⟩⟨𝜇| ⊗ |𝜇⟩⟨𝜇| ⊗ 1⊗ 1⊗ |EPR𝜇⟩⟨EPR𝜇|.

This completes the proof. ⊓⊔

Next, we have the following immediate corollary of Lemma 37.

Corollary 38. Consider an operator of the form

𝑂 =
∑︁
𝜇𝐴,𝜇𝐵

|𝜇𝐴⟩⟨𝜇𝐴| ⊗ |𝜇𝐵⟩⟨𝜇𝐵| ⊗ 1𝐴 ⊗ 1𝐵 ⊗𝑂𝜇𝐴,𝜇𝐵 ,

where the two identity matrices act on the |𝑞⟩ registers of Hilbert spaces 𝐴 and 𝐵, and the 𝑂𝜇𝐴,𝜇𝐵
matrix acts on the |𝑝⟩ registers of 𝐴 and 𝐵, Next, let 𝑍 be the matrix

𝑍 = E
𝜋∼S𝑑

[𝒫𝐴(𝜋)⊗ 𝒫𝐵(𝜋)].

Then
𝑍 ·𝑂 · 𝑍 =

∑︁
𝜇

𝑐𝜇 · |𝜇⟩⟨𝜇|𝐴 ⊗ |𝜇⟩⟨𝜇|𝐵 ⊗ 1𝐴 ⊗ 1𝐵 ⊗ |EPR𝜇⟩⟨EPR𝜇|,

for some constants 𝑐𝜇.
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Proof. By Lemma 37,

𝑍 ·𝑂 · 𝑍 =
∑︁
𝜇

|𝜇⟩⟨𝜇|𝐴 ⊗ |𝜇⟩⟨𝜇|𝐵 ⊗ 1𝐴 ⊗ 1𝐵 ⊗ (|EPR𝜇⟩⟨EPR𝜇| ·𝑂𝜇,𝜇 · |EPR𝜇⟩⟨EPR𝜇|)

=
∑︁
𝜇

𝑐𝜇 · |𝜇⟩⟨𝜇|𝐴 ⊗ |𝜇⟩⟨𝜇|𝐵 ⊗ 1𝐴 ⊗ 1𝐵 ⊗ |EPR𝜇⟩⟨EPR𝜇|,

where 𝑐𝜇 = ⟨EPR𝜇| ·𝑂𝜇,𝜇 · |EPR𝜇⟩. This completes the proof. ⊓⊔

Now we prove Theorem 35.

Proof of Theorem 35. Given 𝜓 ∈ {𝜙, 𝛾}, consider the state 𝑀𝜓 defined as

𝑀𝜓 := E
𝑈𝐴∼U𝑑,𝑉 𝐵∼U𝑑

(︁
𝑈𝐴 ⊗ 𝑉 𝐵 · |𝜓⟩⟨𝜓| ·𝑈 †

𝐴 ⊗ 𝑉 †
𝐵

)︁⊗𝑚
.

Using the left and right invariance property of the Haar measure and the commutation between 𝒫𝐴
and 𝒬𝐴 (and likewise for 𝒫𝐵 and 𝒬𝐵), we can see that the mixed state 𝑀𝜓 remains invariant under
the following permutations and unitary rotations:

1. E𝑈∼U𝑑

(︁
𝑈⊗𝑚
𝐴 ·𝑀𝜓 · (𝑈 †

𝐴)
⊗𝑚
)︁
=𝑀𝜓,

2. E𝑉 ∼U𝑑

(︁
𝑉 ⊗𝑚
𝐵 ·𝑀𝜓 · (𝑉 †

𝐵)
⊗𝑚
)︁
=𝑀𝜓,

3. E𝜋∼S𝑑 (𝒫𝐴(𝜋)⊗ 𝒫𝐵(𝜋) ·𝑀𝜓) =𝑀𝜓,

4. E𝜋∼S𝑑 (𝑀𝜓 · 𝒫𝐴(𝜋)⊗ 𝒫𝐵(𝜋)) =𝑀𝜓.

We can now apply the results of Lemma 36 and Corollary 38 to put the mixed state 𝑀𝜓 in the
following form

𝑀𝜓 =
∑︁
𝜇

𝑐𝜓,𝜇 · |𝜇⟩⟨𝜇|𝐴 ⊗ |𝜇⟩⟨𝜇|𝐵 ⊗ 1𝐴 ⊗ 1𝐵 ⊗ |EPR𝜇⟩⟨EPR𝜇|𝐴𝐵. (2.21)

We can therefore interpret the density matrix 𝑀𝜓 as corresponding to a mixed state with one
element in the mixture for each block 𝜇. In this case, measuring the block 𝜇 can be done without
loss of generality, as it does not perturb the state. That can be done entirely on the 𝐴 subsystem
by performing the projective measurement {|𝜇⟩⟨𝜇|𝐴}. Having done this measurement and received
outcome 𝜇, the state is equal to

|𝜇⟩⟨𝜇|𝐴 ⊗ |𝜇⟩⟨𝜇|𝐵 ⊗ 1𝐴 ⊗ 1𝐵 ⊗ |EPR𝜇⟩⟨EPR𝜇|𝐴𝐵,

regardless of whether 𝜓 = 𝜙 or 𝛾. Hence, no further information can be learned about 𝜓 by
performing any further measurements, and this implies that measuring only the 𝐴 subsystem is
without loss of generality. ⊓⊔
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Chapter 3

Entanglement spread area law in gapped
ground states

Chapter summary: In this chapter, we make a connection between two seemingly different
problems. The first problem involves characterizing the properties of entanglement in the ground
state of gapped local Hamiltonians, which is a central topic in quantum many-body physics. The
second problem is on the quantum communication complexity of testing bipartite states, a well-
known question in quantum information theory. We begin with constructing a communication
protocol between two parties that allows them to test if they share a specific bipartite state. We
then use the communication complexity of this protocol to reveal a new structural property for the
ground state entanglement. This property is captured in a quantity known as the entanglement
spread, which measures the difference between the Rényi entanglement entropies. Our main result
shows that gapped ground states possess limited entanglement spread across any cut, exhibiting an
“area law” behavior. Our result applies to any interaction graph with an improved bound for the
special case of lattices. This entanglement spread area law includes interaction graphs constructed
in [AHL+14] that violate a generalized area law for the entanglement entropy.

On the technical side, we use recent advances in Hamiltonian simulation algorithms along with
the quantum phase estimation to give a new construction for an approximate ground space projector
(AGSP) over arbitrary interaction graphs, which might be of independent interest. This chapter is
based on:

[AHS20] Anurag Anshu, Aram W Harrow, and Mehdi Soleimanifar. From communication com-
plexity to an entanglement spread area law in the ground state of gapped local Hamiltonians.
To appear in Nature Physics. Preprint available at arXiv:2004.15009, 2020.

3.1 Introduction

3.1.1 Background on area law and entanglement spectra

The ground states of local Hamiltonians are examples of quantum many-body states with central
significance in condensed matter physics and quantum chemistry. A crucial distinction between
these states and their classical counterparts – the satisfying assignments in constraint satisfaction
problems – is the presence of multipartite entanglement. This leads to novel phenomena in these
systems such as exotic phases of matter, but also complicates the theoretical and numerical study
of their properties.
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There is a successful line of research that applies the tools developed in quantum information
theory and computer science to study various features of entanglement in the ground states. An
important problem that has been the focus of many such studies is proving a conjecture known as the
“area law” for the entanglement entropy in the ground state of gapped local Hamiltonians. We can
more precisely state this by considering the interaction (hyper)graph where each vertex represents
a qudit and the edges correspond to the interaction terms in the Hamiltonian (see Figure 3-1).
Suppose we fix a partition of the qudits into two parts 𝐴 and 𝐵. We denote the ground state by
|Ω⟩𝐴𝐵. In general, the qudits in part 𝐴 will be entangled with those in part 𝐵. The area law asserts
that the amount of entanglement – measured by the entropy of either of the reduced states Ω𝐴 or Ω𝐵
– is at most proportional to the number of interaction terms that cross the cut 𝜕𝐴. This behavior
is drastically different from the generic situation where the entanglement across the cut 𝜕𝐴 scales
with the size of the smaller partition |𝐴| rather than |𝜕𝐴|. Thus, loosely speaking, the area law
implies that the ground state entanglement is local and limited to the boundary. This conjecture
has been rigorously proven when the interaction graph is a 1D chain [Has07a, ALV12, AKLV13]
and there has been recent progress on trees [Abr19] and 2D lattices [AAG21].

A generalization of this conjecture asks if the area law holds for arbitrary interaction graphs
beyond lattices. It turns out that this generalized conjecture is false. Using quantum expanders,
an interaction graph is constructed in [AHL+14] which admits a partition into two parts 𝐴 and
𝐵 such that the size of the cut is |𝜕𝐴| = 1, but the amount of entanglement across the cut is
proportional to |𝐴|.

Thus far, these results study the ground state entanglement in terms of the entropy of the
reduced state Ω𝐴 on partition 𝐴. One can go beyond this and consider other features of the
eigenvalues of the reduced state Ω𝐴 besides its entropy. We denote the non-zero eigenvalues of Ω𝐴
by 𝜆1, 𝜆2, , . . . , 𝜆𝑟 which are often called the Schmidt coefficients. A common way of describing
the distribution of these eigenvalues is by using the entanglement spectrum which is defined as the
log of the inverse of the non-zero Schmidt coefficients {log 1

𝜆1
, log 1

𝜆2
, . . . , log 1

𝜆𝑟
}. More intuitively,

the entanglement spectrum of a reduced state Ω𝐴 is the set of eigenvalues of a Hamiltonian 𝐻mod,
known as the modular Hamiltonian, such that the reduced state Ω𝐴 corresponds to the Gibbs
(thermal) state of 𝐻mod. That is, Ω𝐴 = 𝑒−𝐻mod . Various works, initiated by a result of Li and
Haldane [LH08], relate the entanglement spectrum to different characteristics of a given phase (see
e.g., [PTBO10, SPCPG13, CPSV11, KBa19a, DVZ18]). These studies suggest that in 2D gapped
systems, the entanglement spectrum often has features of the spectrum of a 1D local Hamiltonian,
although its features are not always isomorphic to the original Hamiltonian [CKS14]. These studies
motivate investigating different features of the entanglement spectrum beyond what is evident from
its entropy.

Inspired by these results, we prove a new structural property for the entanglement of gapped
ground states. The key to our findings is a connection to the field of quantum communication
complexity. A basic question there is when two parties want to test whether they share a specific
entangled state |𝜓⟩ by exchanging as few messages as possible. In other words, they want to
perform the measurement {|𝜓⟩⟨𝜓|,1− |𝜓⟩⟨𝜓|}. Building on [CH19], we resolve the communication
complexity of this problem and relate it to the details of the entanglement in |𝜓⟩. We can therefore
learn about the nature of the ground state entanglement by allowing |𝜓⟩ to be be the ground state
|Ω⟩ of a local Hamiltonian and design a testing protocol for |Ω⟩. We devise such a measurement
protocol tailored for the ground state of gapped local Hamiltonians by combining recent Hamiltonian
simulation techniques with the quantum phase estimation algorithm, which might be of independent
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Figure 3-1: a, Interacting quantum systems with a general interaction graph partitioned into two
parts 𝐴 and 𝐵 with boundary 𝜕𝐴. b, A similar partition for a system on a lattice. c, The profile
of the eigenvalues (aka Schmidt coefficients) 𝜆1, 𝜆2, . . . , 𝜆𝑟 of the reduced ground state in region 𝐴.
This distribution fully encodes the information about the bipartite entanglement between particles
in region 𝐴 and 𝐵 . Modulo some smoothing that we explain in the main text, the entanglement
spread across the cut 𝜕𝐴 is defined as log(𝑟𝜆1) ≈ log(𝜆1/𝜆𝑟). We show that the entanglement
spread scales as 𝑂(|𝜕𝐴|). We improve this to 𝑂(

√︀
|𝜕𝐴|) for lattice Hamiltonians. In comparison

the area law conjecture for the entanglement entropy asserts that the entropy of the distribution of
the Schmidt coefficients is bounded by the size of the cut |𝜕𝐴|, i.e. 𝑆(Ω𝐴) = 𝑂(|𝜕𝐴|).

interest.
The property that we study is known as the entanglement spread, which roughly measures the

log of the ratio between the largest and the smallest eigenvalue of the reduced state Ω𝐴, giving
an estimate of how spread out their distribution is (see Figure 3-1). Our results apply generally
to any interaction graph, with some improved statement for the special case of lattices. We show
that as long as the Hamiltonian is gapped, its ground state possesses limited entanglement spread
on general interaction graphs, exhibiting an “area law” behavior. On lattices, we prove a sub-area
scaling for this quantity. We connect our result to conjectures regarding the locality of modular
Hamiltonians and also efficient algorithms for estimating the expected value of local observables in
the ground state. We also show that both states that satisfy the entropy area law and those in the
counter-example construction in [AHL+14] fit into our framework. In the next sections, we provide
a more detailed overview of our setup and results.

3.1.2 Entanglement spread and communication complexity of non-local mea-
surements

Consider a bipartite state |𝜓⟩ ∈ ℋ𝐴 ⊗ℋ𝐵, where Alice and Bob own registers, ℋ𝐴 and ℋ𝐵 respec-
tively. Suppose the parties engage in a communication protocol whose goal is to test if they share
the state |𝜓⟩. That is, they would like to implement the reflection operator Ref(𝜓) = 2|𝜓⟩⟨𝜓|−1 or
similarly, perform the two-outcome measurement {|𝜓⟩⟨𝜓|,1−|𝜓⟩⟨𝜓|}. In our setup, these tasks are
locally interchangeable. Namely, the ability to perform controlled reflections will give us the ability
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to do measurements and vice versa 1. Since in general, the state |𝜓⟩ is an entangled state, Alice and
Bob need to exchange qubits to perform this operation. For instance, Alice can send her register
ℋ𝐴 to Bob who then performs the joint operation on ℋ𝐴 ⊗ℋ𝐵 and sends back Alice’s register. As
we will see later, they can often do much better. The communication complexity (or cost) of such
a protocol CΔ(𝜓) is defined as the minimum number of qubits that the parties need to exchange
to perform this task with error at most Δ. We refer to CΔ(𝜓) as the communication complexity
of an EPR-assisted protocol, if we allow Alice and Bob to also share unlimited EPR pairs during
the communication protocol. Here, we are interested in the case where |𝜓⟩ is the ground state of a
gapped local Hamiltonian. In other words, we ask

What is the communication cost CΔ(Ω) of approximately measuring or reflecting about
the ground state of a gapped local Hamiltonian which is shared between Alice and Bob?

Before specializing to the ground state, it is insightful to consider a few general instances.

1) |𝜓⟩ = |0⟩⊗𝑛|0⟩⊗𝑛: This is equivalent to a CZ gate, or equivalently a CNOT gate, which has
communication cost 1.

2) |𝜓⟩ = 1√
𝑝

∑︀𝑝
𝑗=1 |𝑗⟩|𝑗⟩: Initially, one might think that reflecting about the maximally entangled

state |Φ𝑝⟩ = 1√
𝑝

∑︀𝑝
𝑗=1 |𝑗⟩|𝑗⟩ requires exchanging a large number of qubits, but it turns out

that by using quantum expanders [AHL+14], one can perform such a reflection up to error Δ
by exchanging CΔ(𝜓) = 𝑂(log(1/Δ)) qubits, which is independent of the dimension 𝑝.

3) |𝜓⟩ = 1√
2
(|00⟩⊗𝑛+ |Φ2⟩⊗𝑛): This is a superposition of the last two cases with |Φ2⟩ = 1√

2
(|00⟩+

|11⟩) being the EPR pair. We claim that CΔ(𝜓) = Θ(𝑛). This can be verified by noticing
that ||Ref(𝜓)|00⟩⊗𝑛 − |Φ2⟩⊗𝑛|| ≤ 2−(𝑛−1)/2, but it is well-known that creating 𝑛 EPR pairs
|Φ2⟩⊗𝑛 from product states requires Ω(𝑛) qubits of communication; see also [HL11].

In general, by applying local unitaries, a bipartite state |𝜓⟩ can be always transformed to a
standard form |𝜓⟩ =∑︀𝑟

𝑗=1

√
𝜆𝑗 |𝑗⟩|𝑗⟩ known as the Schmidt decomposition. Thus, we expect CΔ(𝜓)

to depend only on the Schmidt coefficients 𝜆𝑗 . We assume these coefficients are arranged in the
descending order 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑟, where 𝑟 is called the Schmidt rank of |𝜓⟩. A closer look at
the above examples reveals a pattern. In the first two instances, where CΔ(𝜓) is small, the Schmidt
coefficients of |𝜓⟩ are all equal (which we refer to as the concentrated case). In the third example,
which has high communication cost, the Schmidt coefficients are spread out between two different
values 1

2(1 +
1√
2𝑛
)2 ≈ 1/2 and 1

2𝑛+1 with almost equal weights.
This motivates a more general lower bound on the communication complexity in terms of the

entanglement spread of the state |𝜓⟩, which is a measure of how spread out the Schmidt coefficients
are across a cut [HW03]. In its simplest form, the entanglement spread, denoted by ES(𝜓), is
defined by

ES(𝜓) = log(𝑟𝜆1) = 𝑆max(𝜓𝐴)− 𝑆min(𝜓𝐴), (3.1)

1To see this, just locally initialize a qubit in state |+⟩, perform a controlled reflection, and then locally measure
in the Hadamard basis. The ability to do a coherent measurement also gives the power of reflection: We can add a
−1 phase if the outcome of the measurement is 1− |𝜓⟩⟨𝜓|.
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where 𝜓𝐴 = tr𝐵 |𝜓⟩⟨𝜓| and

𝑆max(𝜓𝐴) = log 𝑟, 𝑆min(𝜓𝐴) = − log 𝜆1 (3.2)

are the max- and min-entropies given in terms of the Schmidt rank 𝑟 and the maximum Schmidt
coefficient 𝜆1 (see Figure 3-1). Indeed, one can verify that in the first two examples, ES(𝜓) = 0
while in the third case, ES(𝜓) = Θ(𝑛). Thus, ES(𝜓) distinguishes between the concentrated versus
spread out cases in the examples above.

The definition of the entanglement spread given in equation (3.1) is however not robust to
small perturbation of the spectrum of the eigenvalues. For instance, addition of a series of small
eigenvalues to the tail of the distribution significantly affects the Schmidt rank 𝑟 but alters the
state negligibly in trace distance. In our results, we need a more robust version of the entanglement
spread (3.1) that applies to protocols which only approximately implement the two-outcome ground
state measurement, i.e. when the error Δ > 0. We denote this version by ES𝛿(𝜓) and following
[HW03], we define:

Definition 39 (Entanglement spread). Let 𝛿 ∈ [0, 1). The (𝛿-smooth) entanglement spread of a
bipartite state |𝜓⟩ ∈ ℋ𝐴𝐵 is defined by

ES𝛿(𝜓) = 𝑆𝛿max(𝜓𝐴)− 𝑆𝛿min(𝜓𝐴),

where 𝑆𝛿min(𝜓𝐴) and 𝑆𝛿max(𝜓𝐴) are the smooth min- and max- entropies defined similar to (3.2)
after removing up to a mass 𝛿 from the Schmidt distribution of |𝜓⟩ (see Definition 48 in the body
for details).

We now look more closely at why, besides the above examples, the entanglement spread provides
a lower bound on the communication cost of measuring (testing) a general state |𝜓⟩? In the exact
case Δ = 0, this can be seen by observing that for each qubit exchanged between Alice and Bob,
the rank 𝑟 and the largest Schmidt coefficient 𝜆1 change at most by a factor of 2 and hence, after 𝑐
rounds of communication, log(𝑟𝜆1) is at most 2𝑐 (refer to [HW03, Theorem 1] for the more detailed
proof of the Δ = 0 case). This shows that (modulo a constant) ES(𝜓) provides a lower bound
on the exact communication complexity. In the approximate regime Δ > 0, similar lower bounds
in terms of ES𝛿(𝜓) have been proved before [HW03, CH19]. We derive an analogous lower bound
tailored for when the state of interest is the ground state of a gapped local Hamiltonian, which is
explained in detail in the next section.

A very useful property of the entanglement spread is that it remains unchanged when the state is
supplemented by arbitrary numbers of EPR pairs. That is, ES𝛿(𝜓⊗Φ𝑝) = ES𝛿(𝜓) for any maximally
entangled state of arbitrary size 𝑝. One way of seeing this is that adding |Φ𝑝⟩ multiplies 𝑟 by 2𝑝 and
divides 𝜆1 by 2𝑝, leaving the entanglement spread unchanged. One interesting implication of this
equality is that the lower bound on the communication complexity in terms of ES𝛿(𝜓) continues to
hold even in protocols where Alice and Bob share an arbitrary number of EPR pairs during their
communication. As we will see later, this improves and simplifies our analysis. We denote the
shared EPR pairs collectively by |Φ⟩ and call such protocols EPR-assisted.
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3.2 Our results

3.2.1 Lower bound on communication complexity from entanglement spread

As described in the previous section, the goal of Alice and Bob is to implement a measurement
{𝐾,1−𝐾} that acts jointly on an input state and the shared EPR pairs |Φ⟩, where 𝐾 is an operator
approximately projects the input state onto the ground state |Ω⟩ while leaving |Φ⟩ untouched. More
precisely, we define:

Definition 40 (EPR-assisted AGSP). An EPR-assisted Approximate Ground State Projector
(EPR-assisted AGSP for short) associated with the ground state |Ω⟩ of a local Hamiltonian is an
operator 𝐾 that for some error Δ ∈ (0, 1) satisfies

||(𝐾 − 1⊗ |Ω⟩⟨Ω|) |Φ⟩|𝜓⟩|| ≤ Δ for all |𝜓⟩ ∈ ℋ𝐴 ⊗ℋ𝐵.

In our first result, we give a lower bound on the communication complexity of implementing this
operator in terms of the entanglement spread of the ground state.

Theorem 41 (Lower bound on the complexity of EPR-assisted AGSP). Let |Ω⟩ ∈ ℋ𝐴⊗ℋ𝐵 be the
ground state of a local Hamiltonian shared between Alice and Bob. For any error Δ ∈ (0, 1), the
communication complexity of implementing the two-outcome measurement {𝐾,1 −𝐾} where 𝐾 is
the EPR-assisted AGSP corresponding to |Ω⟩ is lower bounded by

CΔ(Ω) ≥ ES(4
√
2Δ)2/3(Ω)− 1 = 𝑆(4

√
2Δ)2/3

max (Ω𝐴)− 𝑆
(4
√
2Δ)2/3

min (Ω𝐴)− 1. (3.3)

We note that the above theorem applies to any state |Ω⟩, as long as an approximate projection
operator 𝐾 (similar to Definition 40) exists. But we keep the “ground state” terminology in our
discussion, to fit the context.

3.2.2 Communication protocol for approximate ground space projection

In Theorem 41, we stated a lower bound on CΔ(Ω), the communication complexity of approximately
measuring the ground state. The main claim of this section is an upper bound on the communi-
cation cost CΔ(Ω) which is obtained from an explicit communication protocol that approximately
implements a ground state measurement.

Let |𝐴| be total number of qudits on Alice’s side. Alice and Bob can trivially implement 𝐾 by
exchanging |𝐴| qudits. Our result shows that when the input state is the ground state of a gapped
Hamiltonian, the communication complexity can be improved to 𝑂(|𝜕𝐴|), where |𝜕𝐴| is the number
of terms in the Hamiltonian that act on both Alice and Bob’s registers, see Figure 3-1.

Theorem 42 (Communication protocol for projecting onto the ground space). Suppose the state
|Ω⟩ is the ground state of a local Hamiltonian with spectral gap 𝛾 (See Section 3.5 for a formal
definition of “local Hamiltonian.”). Let |𝜕𝐴| be the number of terms in the Hamiltonian that acts
on both Alice and Bob’s qudits. Then, there exists a protocol that implements the measurement
{𝐾,1−𝐾}, where 𝐾 is an EPR-assisted AGSP satisfying

||(𝐾 − 1⊗ |Ω⟩⟨Ω|) |Φ⟩|𝜓⟩|| ≤ Δ for all |𝜓⟩ ∈ ℋ𝐴 ⊗ℋ𝐵.
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and has the communication cost

𝑐 = 𝑂

(︂ |𝜕𝐴|
𝛾

· log 1

Δ
· polylog( |𝜕𝐴|

𝛾
,
1

Δ
)

)︂
(3.4)

As a result of Theorem 41 in the previous section, we know that the communication complexity of
performing an AGSP gives us an upper bound on the entanglement spread of the ground state. When
combined with the bound (3.4), this establishes an area law for the entanglement spread, meaning
that across a given cut in the ground state of a gapped Hamiltonian, the Schmidt coefficients can
be spread out at most proportional to the size of the cut.

Corollary 43 (Area law for entanglement spread). Under the assumptions of Theorem 41 and
Theorem 42, the following bound on the 𝛿-smooth entanglement spread of the ground state |Ω⟩ of a
gapped local Hamiltonian holds,

ES𝛿(Ω) ≤ 𝑂

(︂ |𝜕𝐴|
𝛾

· log 1

𝛿
· polylog( |𝜕𝐴|

𝛾
,
1

𝛿
)

)︂
(3.5)

Note that the range of applicability of Corollary 43 is quite general. The bound (3.5) holds for
any local Hamiltonian over an arbitrary interaction (hyper)graph. In particular, we do not assume
the Hamiltonian is also geometrically local or the qudits are arranged on a lattice. In fact, when the
Hamiltonian is restricted to any finite dimensional lattice, we can obtain tighter bounds on the en-
tanglement spread by lifting the powerful machinery of AGSPs based on the Chebyshev polynomials
[AKLV13, ALV12] from 1D geometries to higher dimensions. This quadratically improves the bound
(3.4) to 𝑐 = 𝑂̃(

√︀
|𝜕𝑤𝐴|/𝛾) at the cost of including an extended boundary 𝜕𝑤𝐴 of constant width 𝑤

instead of the original boundary 𝜕𝐴. Note that |𝜕𝑤𝐴| = 𝑂(|𝜕𝐴|) on lattices when 𝑤 = 𝑂(1). This
is an intriguing result since it shows a “sub-volume” scaling for an information theoretic quantity in
the gapped ground states. We further discuss this in Section 3.4. In this setting, it is convenient to
view 2𝑐 as the Schmidt rank of the AGSP operator across the cut. We also do not rely on shared
EPR pairs in this setup. To distinguish things from our previous construction, we refer to this
operator as the Chebyshev-AGSP. More precisely, we have:

Theorem 44 (Chebyshev-AGSP for lattices). Suppose, 𝐻 is a geometrically-local Hamiltonian
with gap 𝛾 over a finite-dimensional lattice. Let (𝐴 : 𝐵) be a bipartition of the lattice. There is an
operator 𝐾 with the Schmidt rank 2𝑐 across the partition (𝐴 : 𝐵) such that ||𝐾 − |Ω⟩⟨Ω||| ≤ Δ and

𝑐 = 𝑂

(︃√︃
|𝜕𝑤𝐴|
𝛾

· log 1

Δ
· polylog

(︂ |𝜕𝑤𝐴|
𝛾

,
1

Δ

)︂)︃
, (3.6)

where 𝑂̃ hides constant factors related to the geometry of the Hamiltonian and 𝑤 = 𝑂(1). Here,
|𝜕𝑤𝐴| is the number of terms in the Hamiltonian that act on the qudits in some extended boundary
of constant width around 𝜕𝐴.

Corollary 45 (Tighter bounds on entanglement spread on lattices). Under the same conditions in
Theorem 41 and Theorem 44, the 𝛿-smooth entanglement spread of the ground state of geometrically
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local Hamiltonians is bounded by

ES𝛿(Ω) ≤ 𝑂

(︃√︃
|𝜕𝑤𝐴|
𝛾

· log 1

𝛿
· polylog

(︂ |𝜕𝑤𝐴|
𝛾

,
1

𝛿

)︂)︃
(3.7)

where 𝑤 = 𝑂(1).

3.3 Main ideas

Here, we describe the main ideas and technical tools used in the proof of our results.

3.3.1 AGSP from quantum phase estimation

One ingredient of our proofs is a novel construction of an AGSP for the ground state of gapped
Hamiltonians based on the quantum phase estimation (QPE) algorithm. We find a protocol be-
tween Alice and Bob that allows them to jointly apply this AGSP with communication complexity
𝑂̃(|𝜕𝐴|/𝛾). As mentioned in Section 3.2.2, one advantage of using QPE compared to the conven-
tional Chebyshev polynomials (reviewed in Section 3.3.4) is that it applies not only to geometrically-
local Hamiltonians on lattices, but also continues to work for any local Hamiltonian on arbitrary
interaction graphs.

One can view QPE as a procedure that given an eigenstate of a Hamiltonian 𝐻, uses 𝑂(log(1/𝛾))
many ancillary qubits, makes 𝑂(1/𝛾) queries to the Hamiltonian simulation oracle 𝑒−𝑖𝐻 , and deter-
mines the energy of the input state with accuracy 𝛾/2. By letting 𝛾 be the gap of the Hamiltonian,
this algorithm basically performs a two outcome measurement {Ω,1−Ω} on any input state, where
Ω is the ground state of 𝐻.

To implement this algorithm in a distributed fashion involving two parties, Alice and Bob need
to prepare and reflect about the state 1√

𝑇+1

∑︀𝑇
𝑡=0 |𝑡⟩|𝑡⟩ for 𝑇 = 𝑂(1/𝛾) and work together to apply

the operator 𝑒−𝑖𝑡𝐻 conditioned on the register |𝑡⟩. In the next section, we show how to achieve this.

3.3.2 Communication protocol based on interaction picture Hamiltonian simu-
lation

For a given partition of the qudits between Alice and Bob, we can write the Hamiltonian as
𝐻 = 𝐻𝐴 + 𝐻𝜕𝐴 + 𝐻𝐵 where [𝐻𝐴, 𝐻𝐵] = 0. One of our main technical contributions is design-
ing a communication protocol for performing the Hamiltonian simulation operator 𝑒−𝑖𝑡𝐻 with a
communication cost that scales as 𝑂(𝑡||𝐻𝜕𝐴||) instead of the conventional 𝑂(𝑡||𝐻||).

It is not hard to see how one can achieve this if the boundary term 𝐻𝜕𝐴 also commutes with 𝐻𝐴

and 𝐻𝐵. In that case, we have 𝑒−𝑖𝑡𝐻 = 𝑒−𝑖𝑡𝐻𝐴𝑒−𝑖𝑡𝐻𝜕𝐴𝑒−𝑖𝑡𝐻𝐵 and the parties can implement 𝑒−𝑖𝑡𝐻

if one of them sends the boundary qudits that are in the support of 𝐻𝜕𝐴 to the other. This yields
a communication cost that scales with | supp(𝐻𝜕𝐴)| = 𝑂(|𝜕𝐴|). In general, however, 𝐻𝜕𝐴 does
not commute with 𝐻𝐴 and 𝐻𝐵 and finding a non-trivial protocol for the Hamiltonian simulation
becomes challenging.

One attempt to remedy this might be to use the Trotterization technique. That is, to di-
vide the simulation into 𝜂 segments and implement 𝑒−𝑖𝑡𝐻/𝜂 for 𝜂 consecutive times. If 𝜂 is large
enough, [𝐻𝜕𝐴/𝜂,𝐻𝐴 or 𝐵/𝜂] ≈ 0, and we again recover the commuting case. That is, the parties

60



collaboratively implement 𝑒−𝑖𝑡𝐻𝜕𝐴/𝜂. Unfortunately, for this to work, we need 𝜂 (and therefore, the
communication cost) to be 𝑂(𝑡||𝐻||), which is far from the bound 𝑂(𝑡||𝐻𝜕𝐴||) we are aiming for.

We instead use a recent framework for Hamiltonian simulation developed in [LW18] known as
the “interaction picture” Hamiltonian simulation. Intuitively, one can view this as a sophisticated
change of variables that is widely used in physics and allows us to separate the contribution of the
boundary term from 𝐻𝐴 and 𝐻𝐵. Suppose we want to prepare the state |𝜓(𝑡)⟩ = 𝑒−𝑖𝑡𝐻 |𝜓(0)⟩. For
any |𝜓(𝑡)⟩, we define its counterpart in the interaction picture by

|𝜓𝐼(𝑡)⟩ = 𝑒𝑖𝑡(𝐻𝐴+𝐻𝐵)|𝜓(𝑡)⟩. (3.8)

Since the operator 𝑒𝑖𝑡(𝐻𝐴+𝐻𝐵) can be applied locally by the parties, the states |𝜓𝐼(𝑡)⟩ and |𝜓(𝑡)⟩
can be switched with each other with no extra communication. The point of this transformation is
that the state |𝜓𝐼(𝑡)⟩ can be prepared starting from |𝜓(0)⟩ by applying a unitary 𝑈(𝑡) which is the
Hamiltonian simulation operator associated with a time dependent Hamiltonian

𝐻𝐼(𝑡) = 𝑒𝑖𝑡(𝐻𝐴+𝐻𝐵)𝐻𝜕𝐴𝑒
−𝑖𝑡(𝐻𝐴+𝐻𝐵). (3.9)

Putting the time-dependence of 𝐻𝐼(𝑡) aside (we discuss that in more details in Section 3.7.1), the
main gain is that ||𝐻𝐼(𝑡)|| = ||𝐻𝜕𝐴||. This solves the issue we mentioned before because here, the
length of Trotter step 𝜂 in implementing 𝑈(𝑡) can be taken as small as 𝑂(𝑡||𝐻𝜕𝐴||) instead of the
original 𝑂(𝑡||𝐻||). The remaining task is to find a communication protocol for performing 𝑈(𝑡/𝜂),
which now, is not simply the operator 𝑒−𝑖𝑡𝐻𝜕𝐴/𝜂 that we had before. This is done in [BCC+15, LW18]
using the Linear Combination of Unitaries (LCU) method. Our next idea is a modification of this
algorithm that suits our framework better.

3.3.3 EPR-assisted communication and the LCU method

Our results regarding the ground state entanglement and the communication complexity are infor-
mation theoretic in nature. In particular, the running time or other algorithmic aspects of the tools
we use, such as the Hamiltonian simulation, do not affect our conclusions. Here, we explain how we
can use this observation to simplify the analysis of a part of our protocol.

In the LCU method, we express the Hamiltonian simulation operator 𝑈(𝑡) as sum of unitaries
𝑈(𝑡) ≈∑︀𝑘 𝛼𝑘𝑢

(𝐴)
𝑘 ⊗𝑢(𝐵)

𝑘 for some choice of coefficients 𝛼𝑘 ∈ R and unitaries 𝑢(𝐴)𝑘 and 𝑢(𝐵)
𝑘 that act

on Alice and Bob’s qudits respectively. Such decomposition as a sum of unitaries could come from
the truncation of a Taylor expansion. To keep the running time efficient such Taylor expansions are
truncated at low orders.

When Alice and Bob jointly implement the LCU algorithm, they need to prepare and share the
ancillary state |𝛼⟩ = (

∑︀
𝑘 𝛼𝑘)

−1/2
∑︀

𝑘

√
𝛼𝑘|𝑘⟩𝐴|𝑘⟩𝐵. Then, they proceed by applying the unitaries

𝑢
(𝐴)
𝑘 ⊗𝑢

(𝐵)
𝑘 conditioned on their register |𝑘⟩. Now suppose instead of truncating the expansions, we

continue adding higher terms. Of course, the issue is that the number of coefficients 𝛼𝑘 and thus,
the communication cost of sharing |𝛼⟩ and reflecting about |𝛼⟩ also increases. On the other hand,
we know that if instead of |𝛼⟩, the parties share a maximally entangled state, the bound (3.5) on
the entanglement spread remains intact. In other words, it is not the number of exchanged ancillary
qubits in the protocol, but their entanglement spread that affects our final bound (3.5).

We fix this problem by modifying the LCU algorithm such that instead of the state |𝛼⟩, Alice
and Bob only share the maximally entangled state (or equivalently some number of EPR pairs).
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This state only needs to be shared once, which can be done outside the protocol, and then many
reflections about it can be done with a cost independent of the size of the state. Now we can keep
an unbounded number of terms in the expansions and avoid similar approximations in our protocol.
This blows up the running time of these procedures, but maintains the communication complexity.

3.3.4 AGSP for lattices

Our improved bound for the lattice Hamiltonians in Theorem 44 are obtained using the AGSPs
based on the Chebyshev polynomials. These were first developed in the context of the area law for
entanglement entropy in 1D systems [ALV12, AKLV13, ALVV17]. The AGSP framework [AALV09,
ALV12] in itself provides a framework to connect the min-entropy and entanglement entropy (see
[AALV09, Lemma 5.3] or [ALV12, Lemma III.3]). But this connection does not give us the desired
bound on entanglement spread, as it relates entanglement entropy and min-entropy by a certain
multiplicative factor, that may be large. For instance, [ALV12, Lemma III.3] implies that by choosing
the Chebyshev-based AGSP which has a shrinking of 𝑂(1) and the Schmidt rank of 2𝑂(

√
|𝜕𝐴|), we

get
𝑆(Ω𝐴) = 𝑂(

√︀
|𝜕𝐴|𝑆min(Ω𝐴)), (3.10)

where 𝑆(Ω𝐴) is the von-Neumann entropy of (Ω𝐴).
Here, we show that a simple adaptation of the Chebyshev-based AGSP, along with appropriate

smoothing, leads to a stronger theorem for lattices, which shows that entanglement spread scales as
𝑂(
√︀
|𝜕𝐴|) (see discussion section for the interpretation). We utilize the “truncation step” [AKLV13]

which is used to lower the norm of the Hamiltonian away from a cut while maintaining its gap and
ground state. We apply the truncation to both the frustration-free and frustrated cases. In the
former, we use the Detectability Lemma operator [AALV09], while in the latter, we rely on the
recent techniques of [KS20a] to perform the truncation.

3.4 Discussion and connection to previous work

Quadratically better scaling on lattices: In Corollary 45, we have shown that the entangle-
ment spread on lattices scales as

√︀
|𝜕𝐴| The intuition behind this comes from the exponential decay

of correlations which is shown to hold for gapped Hamiltonians on any finite dimensional lattice
[Has04, HK06, NS06]. The decay of correlations implies that the distant qudits along the boundary
𝜕𝐴 are almost uncorrelated. This suggests that the ground state across the boundary is roughly in
a product form |𝜑⟩⊗|𝜕𝐴|

𝐴𝐵 composed of 𝑂(|𝜕𝐴|) partially entangled states |𝜑⟩𝐴𝐵 . By using conven-
tional concentration bounds [LP99], it can be shown that the smooth entanglement spread obeys
ES𝛿(𝜑

⊗𝑘) = 𝑂(
√
𝑘), which is quadratically smaller than the 𝛿 = 0 case where ES(𝜑⊗𝑘) = 𝑂(𝑘).

Thus, an entanglement spread of 𝑂(
√︀

|𝜕𝐴|) that we prove for gapped lattice Hamiltonians matches
our intuitive expectation.

One might wonder if our quadratic bound in Theorem 44 for lattices can be improved. Here, we
show that this is not possible in general. Consider a 𝐷-dimensional cubic lattice [𝑛]𝐷 for an even
𝑛 such that the qubits are located on the vertices of the lattice. Let 𝐴 = [𝑛2 − 1] × [𝑛] × . . . × [𝑛]
define a bipartition of this lattice. Suppose, we have a Hamiltonian 𝐻 on the lattice given by

𝐻 =
∑︁

𝑖1,...,𝑖𝐷:𝑖1=even

(1−Ψ𝑖1,...𝑖𝐷),
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where the entangled states

|Ψ⟩𝑖1,...𝑖𝐷 =

(︃√︂
2

3
|0⟩𝑖1,...𝑖𝐷 |0⟩𝑖1+1,...𝑖𝐷 +

√︂
1

3
|1⟩𝑖1,...𝑖𝐷 |1⟩𝑖1+1,...𝑖𝐷

)︃

is defined between qudits (𝑖1, 𝑖2, . . . 𝑖𝐷) and (𝑖1 + 1, 𝑖2, . . . 𝑖𝐷). Then, the ground state is the simple
two-qudit product state ⨂︁

𝑖1,...𝑖𝐷:𝑖1=even

|Ψ⟩𝑖1,...𝑖𝐷 .

It is easily seen that the entanglement spread across this partition is at least Ω(
√
𝑛𝐷−1) = Ω(

√︀
|𝜕𝐴|)

achieving the bound in Theorem 44.
Is it possible to prove an analog of Theorem 44 with 𝑆

(4
√
2Δ)2/3

min (Ω𝐴) replaced by 𝑆min(Ω𝐴)?
This cannot be done without changing the upper bound from 𝑂(|𝜕𝐴|1/2) to 𝑂(|𝜕𝐴|), since the
two-qubit product ground state constructed above has the property that 𝑆min(Ω𝐴) ≤ |𝜕𝐴|/4 and
𝑆
(4
√
2Δ)2/3

max (Ω𝐴) ≥ 0.92|𝜕𝐴|. Improving 𝑆(4
√
2Δ)2/3

max (Ω𝐴) to 𝑆max(Ω𝐴) is also not possible since there
are Hamiltonians such as the transverse field Ising model that are gapped but have 𝑆max(Ω𝐴) scaling
with the system size [CC04].

Locality of modular Hamiltonians: As mentioned in Section 3.1.1, given the reduced state
Ω𝐴, the modular (or entanglement) Hamiltonian 𝐻mod is defined such that Ω𝐴 = 𝑒−𝐻mod . In other
words, Ω𝐴 corresponds to the Gibbs (thermal) state of 𝐻mod. The eigenvalues of 𝐻mod are known
as the entanglement spectrum [LH08]. An application of our result in Theorem 44 and Corollary 45
is to give formal evidence for a conjecture regrading the entanglement spectrum studied in previous
works [LH08, SPCPG13, CPSV11, KBa19a, DVZ18]). According to this conjecture, in 2D gapped
systems, the entanglement spectrum often has similar features to that of the spectrum of a 1D
local Hamiltonian. In particular, the entanglement entropy area law predicts an 𝑂(|𝜕𝐴|) scaling
for the entropy of Ω𝐴 which matches the entropy of the Gibbs state of a 1D Hamiltonian. A more
general question is what aspects of the modular Hamiltonian 𝐻mod are similar to that of a 1D local
Hamiltonian beyond simply the 𝑂(|𝜕𝐴|)-scaling of the entropy. We contribute to this by showing
one further feature, namely the 𝑂(

√︀
|𝜕𝐴|)-scaling of the entanglement spread of Ω𝐴.

To see why the 𝑂(
√︀

|𝜕𝐴|) scaling predicted by our bound (3.7) for the gapped ground states is
in agreement with 𝐻mod being a 1D local Hamiltonian, we use the well-known fact that at thermal
equilibrium, the energy distribution of a many-body quantum system is concentrated around the
average energy. Indeed if 𝐻mod is a sum of 𝑂(|𝜕𝐴|) local terms, each of norm 𝑂(1), then the energy
variance 𝜎2 = tr[𝐻2

modΩ𝐴] − tr[𝐻modΩ𝐴]
2 ≤ 𝑂(|𝜕𝐴|), which can be shown using the exponential

decay of correlations in the Gibbs state of such Hamiltonians [Ara69, PGPH20]. It follows from
the Chebyshev’s inequality on the concentration of probability distributions that the 𝛿-smooth
entanglement spread of the spectrum of the Gibbs state satisfies ES𝛿(Ω𝐴) ≤ 𝑂(

√︀
|𝜕𝐴|/𝛿), yielding

the same 𝑂(
√︀
|𝜕𝐴|) dependency as in bound (3.7). A more sophisticated argument in Corollary 1

of [KS20b] can improve this to ES𝛿(Ω𝐴) ≤ 𝑂
(︁√︀

|𝜕𝐴| log 1
𝛿

)︁
.

Contracting PEPS with exact entanglement spread sub-area law: There is an interesting
connection between entanglement spread and efficient algorithms for estimating the expectation
value of local observables in 2D gapped ground states. We thank Itai Arad for suggesting this
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argument. Suppose a ground state |Ω⟩ is given by its PEPS representation [VMC08] of bond
dimension 𝐷. For any region 𝐴 on the lattice, one can compute a subspace Π such that Ω𝐴 is
supported in Π. This can be achieved by computing 𝐷|𝜕𝐴| vectors and then finding their span
[AAJ16]. This computation takes time polynomial in 𝐷|𝜕𝐴|, which is efficient if 𝐴 is of constant size
and 𝐷 is polynomial in the number of particles. If the PEPS is injective [PGVWC08], the support
of Ω𝐴 coincides with Π.

It is well known that |Ω⟩ satisfies an exponential decay of correlation with length 𝜉 = 𝒪
(︁

1
𝛾

)︁
[Has04, NS06]. We further assume the exact entanglement spread in any region 𝐴 is 𝑐|𝜕𝐴|1−𝜅
for a constant 𝑐 and a parameter 𝜅 > 0. This means that given the reduced state Ω𝐴, we have
𝑒−𝑐|𝜕𝐴|

1−𝜅 ≤ 𝜆max(Ω𝐴)
𝜆min(Ω𝐴) ≤ 𝑒𝑐|𝜕𝐴|

1−𝜅 . Note that the assumption of a ‘sub-area’ scaling for the exact
entanglement spread could be violated in a very simple example of a gapped local Hamiltonian, as
given in the tightness argument earlier in this section. Extending our current result to the case
of smooth entanglement spread, for which we establish a sub-area scaling, is an interesting open
problem.

Consider a qudit and let 𝑂 be an operator supported on it with ‖𝑂‖ ≤ 1. Let 𝐴 be a ball of
radius 𝑟 around this qudit. Let 𝑑 be the dimension of the projector Π for this region computed from
the PEPS. We prove the following in Section 3.9.

Theorem 46. Fix any 𝜖 ∈ (0, 12). Let ⟨𝑂⟩ := ⟨Ω|𝑂|Ω⟩. It holds that⃒⃒⃒⃒
tr𝑂Π

𝑑
− ⟨𝑂⟩

⃒⃒⃒⃒
≤ 𝜖+

1

𝜖
· 𝑒30𝑐𝑟1−𝜅−𝑟/𝜉.

In particular, choosing 𝑟 = (60𝑐𝜉)
1
𝜅 + 2𝜉 log 1

𝜖 , we can efficiently estimate ⟨𝑂⟩ with error 2𝜖 by
computing tr𝑂Π

𝑑 .

Implications for proving area law for the entanglement entropy: Theorem 44 shows that
if one can prove an area law for 𝑆(4

√
2Δ)2/3

min (Ω𝐴), then this implies an area law for 𝑆(4
√
2Δ)2/3

max (Ω𝐴) and
hence, for the entanglement entropy. In contrast, prior work [ALV12] (see Equation 3.10) would show
that an area law for the min-entropy 𝑆min(Ω𝐴) = 𝑂(|𝜕𝐴|) leads to a sub-volume law 𝑂(|𝜕𝐴|3/2) on
the entanglement entropy. We cannot directly compare our result with this, as 𝑆min(Ω𝐴) is smaller
than 𝑆(4

√
2Δ)2/3

min (Ω𝐴).

As mentioned earlier, we cannot replace 𝑆(4
√
2Δ)2/3

min (Ω𝐴) with 𝑆min(Ω𝐴) without changing our
upper bound on the entanglement spread to 𝑂(|𝜕𝐴|). Achieving such a bound is an interesting open
problem since it would rigorously prove that min-entropy area law implies entanglement entropy
area law. The utility of this is that min-entropy area law may be easier to prove in comparison
to the entanglement entropy area law. For instance, for specific models such as stoquastic local
Hamiltonians, proving min-entropy area law can be reduced to a classical problem [BDOT08]

Connection to the counter example to the area law in [AHL+14] Our setup is closest
to [AHL+14], where the authors construct a family of gapped Hamiltonians whose ground states
violate the entropy area law. This is done by connecting a protocol (without any EPR assistance)
for testing maximally entangled states to the ground state of a local Hamiltonian using Kitaev’s
circuit-to-Hamiltonian construction. The obtained ground state admits a bipartition into parts 𝐴
and 𝐵 such that a single Hamiltonian term crosses the cut, but it enforces a maximally entangled
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state Φ|𝐴| between 𝐴 and 𝐵. This causes the entropy of part 𝐴 to be 𝑂(|𝐴|) violating the entropy
area law. Nevertheless, we see that this construction still satisfies our entanglement spread area
law simply because the maximally entangled state has zero entanglement spread, and the ground
state has entanglement spread at most 𝑂(1). When combined with our previous discussion on area
law, this loosely suggests the following: The ground state of a gapped Hamiltonian always exhibits
a small entanglement spread. But it either has a large min-entropy (such as maximally entangled
states in the counter-example Hamiltonian) hence not obeying an entropy area law, or it possesses
small min-entropy (such as the 1D ground states) thus obeying an entropy area law.

Hamiltonian simulation by Trotterization: While we use the interaction picture Hamilto-
nian simulation algorithm, it would be interesting to achieve the same result by directly using the
Trotterization method along the lines of [Ber07]. That is, we want to simulate the Hamiltonian
𝑒−𝑖𝜏𝐻𝜕𝐴 for some small 𝜏 ≈ 1/||𝐻|| with the communication cost 𝑂(𝜏 ||𝐻𝜕𝐴||). By repeating this step
for 1/𝜏 = 𝑂(||𝐻||) times, we obtain the desired overall scaling of 𝑂(||𝐻𝜕𝐴||). The issue with naively
using this approach is that each simulation step requires exchanging one qubit of communication
resulting in a large communication complexity. Note, however, that the entropy of this exchanged
qubit is 𝑂(𝜏). Hence, we expect the quantum information cost of this step [Tou15] to also be 𝑂(𝜏).
We anticipate that performing quantum information theoretic compression on such a protocol would
lead to a new protocol achieving the desired bound. Finally, note that recent results in [CST+21]
achieve a similar bound for the clustered Hamiltonians by a tighter analysis of the Trotter error.

Compression of Schmidt rank: A by-product of our techniques is a compression tool for the
Schmidt rank of any AGSP using EPR assistance. Since this might find other applications beyond
our work, we formally state it in the following proposition.

Proposition 47. Fix an AGSP
𝐾 =

∑︁
𝑖

𝛼𝑖𝑈𝑖 ⊗ 𝑉𝑖,

with 𝛼𝑖 > 0, ‖𝑈𝑖‖, ‖𝑉𝑖‖ ≤ 1, and 𝑈𝑖, 𝑉𝑖 acting on subsystem 𝐴, 𝐵 respectively. Suppose

||𝐾 − |Ω⟩⟨Ω||| ≤ Δ.

Then there exists an EPR-assisted AGSP 𝐾 ′ (as in Definition 40) with Schmidt rank
(︁∑︀

𝑖 𝛼𝑖

Δ

)︁𝒪(1)

such that

||(𝐾 ′ − 1⊗ |Ω⟩⟨Ω|) |Φ⟩|𝜓⟩|| ≤ 2Δ for all |𝜓⟩ ∈ ℋ𝐴 ⊗ℋ𝐵.

Hence, given an AGSP 𝐾, we can use Proposition 47 to construct an EPR-assisted AGSP with
similar shrinking Δ but a Schmidt rank only polynomial in ℓ1-norm of the coefficients 𝛼𝑖 in the
Schmidt decomposition of 𝐾.

3.5 Preliminaries

Local Hamiltonians: Let 𝒮 be a collection of 𝑛 spins, each with dimension 𝑠. The interactions
between these spins are described by a local Hamiltonian 𝐻 =

∑︀𝑁
𝑘=1 ℎ𝑘 where the operators 0 ⪯
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ℎ𝑘 ⪯ 1 act nontrivially only on at most 𝜅 spins. Let 𝐻𝑋 denote the Hamiltonian restricted to
region 𝑋 ⊆ 𝒮. For a bipartition (𝐴 : 𝐵) of the set 𝒮, we write 𝐻 = 𝐻𝐴 +𝐻𝐵 +𝐻𝜕𝐴, where 𝐻𝜕𝐴

is the collection of interaction terms acting on both 𝐴 and 𝐵. We denote the Hilbert space of these
partitions and the whole system by ℋ𝐴, ℋ𝐵 and ℋ𝐴𝐵 respectively.

We denote the spectrum of 𝐻 by 𝐸0 ≤ 𝐸1 ≤ · · · ≤ 𝐸max. For convenience, we assume that
𝐸0 = 0. Let |Ω⟩ be the unique ground state of 𝐻 and |𝐸1⟩, |𝐸2⟩, . . . , |𝐸max⟩ the other eigenstates.
The spectral gap of the Hamiltonian 𝐻 is a constant 𝛾 such that 𝐸1 = 𝐸0+𝛾. We use the notation
Ω := |Ω⟩⟨Ω| and more generally Φ := |Φ⟩⟨Φ| for any state |Φ⟩.

Communication protocols: In what follows, we consider quantum communication protocols
between Alice and Bob. We assume, a bipartition (𝐴 : 𝐵) of the set 𝒮 is shared between the parties
such that Alice has access to spins in region 𝐴 while Bob has access to those in region 𝐵. Both
parties also have their own additional registers.

The parties communicate by sending qubits, and can cooperate to implement an operator sup-
ported on 𝐴 ∪ 𝐵. The communication complexity of implementing such an operator is defined as
the total number of exchanged qubits.

Two-party entanglement Given a state |𝜓⟩𝐴𝐵 shared between Alice and Bob with the Schmidt
coefficients 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑑, the Rényi entropy of order 𝛼 of the reduced state 𝜓𝐴 = tr𝐵 |𝜓⟩⟨𝜓|
is defined as

𝑆𝛼(𝜓𝐴) =
1

1− 𝛼
log (tr𝜓𝛼𝐴) =

1

1− 𝛼
log

(︃
𝑑∑︁
𝑖=1

𝜆𝛼𝑖

)︃
, 0 < 𝛼 <∞. (3.11)

Specifically for 𝛼 = 0, 1,∞, we define the max- and min- entropies by 𝑆max(𝜓𝐴) = log (rank (𝜓𝐴))
and 𝑆min(𝜓𝐴) = − log 𝜆1. The von Neumann entropy 𝑆(𝜓𝐴) is the limiting case of lim𝛼→1 𝑆𝛼(𝜓𝐴) =
− tr[𝜓𝐴 log𝜓𝐴]. In this paper, we mostly use a robust version of these entropies defined as follows.

Definition 48 (Smooth Rényi entropies and entanglement spread). Consider a state 𝜌 with eigen-
values 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑑. For 𝛿 ∈ (0, 1), let

𝑟𝛿(𝜌) = {𝐿 ⊆ [𝑑] :
∑︁
𝑖∈𝐿

𝜆𝑖 ≥ 1− 𝛿}. (3.12)

We define the 𝛿-smooth max- and min- entropies of the state 𝜌 by

𝑆𝛿max(𝜌) = min
𝐿∈𝑟𝛿(𝜌)

log |𝐿|, (3.13)

𝑆𝛿min(𝜌) = − min
𝐿∈𝑟𝛿(𝜌)

log

(︂
max
𝑖∈𝐿

𝜆𝑖

)︂
. (3.14)

The 𝛿-smooth entanglement spread of the state 𝜌 is defined as

ES𝛿(𝜌) = 𝑆𝛿max(𝜌)− 𝑆𝛿min(𝜌) (3.15)

Lemma 49 (Young-Eckart theorem). Consider a bipartite state |𝜓⟩ ∈ ℋ𝐴𝐵 with the Schmidt coef-
ficients 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑑. Let |𝜑⟩ ∈ ℋ𝐴𝐵 be the state with the Schmidt rank ≤ 𝑟 which has the
largest overlap with |𝜓⟩. It holds that |⟨𝜑|𝜓⟩|2 ≤∑︀𝑟

𝑖=1 𝜆𝑖.
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We will use the operator Schmidt decomposition in which an operator 𝑇 acting on two systems
is decomposed as 𝑇 =

∑︀
𝑖∈[𝑟] 𝜆𝑖𝐴𝑖 ⊗ 𝐵𝑖 such that 𝜆𝑖 > 0 and tr[𝐴†

𝑖𝐴𝑗 ] = tr[𝐵†
𝑖𝐵𝑗 ] = 𝛿𝑖𝑗 . The

number of terms 𝑟 is called the Schmidt rank of 𝑇 and satisfies an important submultiplicativity
bound: SR(𝑇1𝑇2) ≤ SR(𝑇1)SR(𝑇2). This includes the case when one operator is a state so that we
have SR(𝑇 |𝜓⟩) ≤ SR(𝑇 )SR(|𝜓⟩).

3.6 Approximate ground space projector and entanglement spread

We being by proving the connection between the entanglement spread and the communication
complexity of testing bipartite states.

Definition 50 (EPR-assisted AGSP, restatement of Definition 40). Fix a bipartition (𝐴 : 𝐵) of the
spins, let |Ω⟩ ∈ ℋ𝐴𝐵 be the ground state of a local Hamiltonian 𝐻 and |Φ⟩ = 1√

𝑝

∑︀𝑝
𝑗=1 |𝑗⟩𝐴0 |𝑗⟩𝐵0

be a maximally entangled state with dimension 𝑝 ≥ 1 shared between Alice and Bob who control 𝐴0

and 𝐵0 respectively. We say that an operator 𝐾 is a (𝐷,Δ)-EPR-assisted AGSP if

– The Schmidt rank of 𝐾 is at most 𝐷 and

– It holds that

||(𝐾 − 1⊗ |Ω⟩⟨Ω|) |Φ⟩|𝜓⟩|| ≤ Δ for all |𝜓⟩ ∈ ℋ𝐴 ⊗ℋ𝐵. (3.16)

Remark 51. The Schmidt rank of the AGSP equals 2𝑐 where 𝑐 is the communication complexity
of implementing it. We switch between 𝐷 and 𝑐 depending on which one is more convenient. Also,
we use EPR-assistance only in our AGSP construction based on the quantum phase estimation and
not the Chebyshev-AGSPs. Nevertheless, the following theorem applies generally to both cases.

Theorem 52 (Bounding entanglement spread using AGSP). Suppose there exists a (𝐷,Δ)-EPR-
assisted AGSP with respect to a partition (𝐴 : 𝐵) such that Δ < 1

4
√
2
. Then the entanglement spread

across (𝐴 : 𝐵) is bounded by

𝑆(4
√
2Δ)2/3

max (Ω𝐴)− 𝑆
(4
√
2Δ)2/3

min (Ω𝐴) ≤ log𝐷 + 1. (3.17)

Proof. Let 𝜀 = (2Δ)2/3. Consider the Schmidt decomposition

|Ω⟩ =
∑︁
𝑖

√︀
𝜆𝑖|𝑖⟩𝐴|𝑖⟩𝐵,

where {𝜆𝑖} are in descending order. Let 𝑏 be the smallest integer such that 𝜀′ :=
∑︀

𝑖<𝑏 𝜆𝑖 ≥ 𝜀 and
define

|Ωheavy⟩ =
∑︁

1≤𝑖<𝑏

√︂
𝜆𝑖
𝜀′
|𝑖⟩𝐴|𝑖⟩𝐵,

|Ωlight⟩ =
∑︁
𝑖≥𝑏

√︂
𝜆𝑖

1− 𝜀′
|𝑖⟩𝐴|𝑖⟩𝐵.
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Hence, |Ω⟩ =
√
𝜀′|Ωheavy⟩+

√
1− 𝜀′|Ωlight⟩. We are also given the Schmidt decomposition of |Φ⟩ as

|Φ⟩ = 1√
𝑝

𝑝∑︁
𝑗=1

|𝑗⟩𝐴0 |𝑗⟩𝐵0 ,

for some integer 𝑝. From the closeness of 𝐾 to |Ω⟩⟨Ω| as in (3.16) and the identity ⟨Ω|Ωheavy⟩ =
√
𝜀′,

we have

‖𝐾|Φ⟩|Ωheavy⟩ − |Φ⟩ ⊗ |Ω⟩⟨Ω|Ωheavy⟩‖ = ‖𝐾|Φ⟩|Ωheavy⟩ −
√
𝜀′|Φ⟩|Ω⟩‖ ≤ Δ. (3.18)

The Schmidt rank of 1√
𝜀′
𝐾 is the same as 𝐾 which equals 𝐷. The Schmidt rank of |Ωheavy⟩ is 𝑏−1.

Hence, the Schmidt rank of 1√
𝜀′
𝐾|Φ⟩|Ωheavy⟩ is at most 𝑝(𝑏− 1)𝐷. From (3.18), we have that⃒⃒⃒⃒

⃒⃒⟨Φ|⟨Ω|
(︁

1√
𝜀′
𝐾
)︁
|Φ⟩|Ωheavy⟩⃒⃒⃒⃒ (︁

1√
𝜀′
𝐾
)︁
|Φ⟩|Ωheavy⟩

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ ≥ 1− 2

Δ√
𝜀′
. (3.19)

Following [ALV12], we use the Young-Eckart theorem (Lemma 49) along with the above bound.
This implies that the sum of the largest 𝑝(𝑏 − 1)𝐷 eigenvalues of Ω𝐴 ⊗ Φ𝐴0 is at least (1 − 2Δ√

𝜀′
)2.

However, since the eigenvalues of Φ𝐴0 are all equal to 1
𝑝 , this sum is equal to

∑︀(𝑏−1)𝐷
𝑖=1 𝜆𝑖. This is

the key point in our proof where we use the fact that |Φ⟩ is maximally entangled; replacing it with
a different state, such as an embezzling state, would cause this step to fail. Hence, we have

(𝑏−1)𝐷∑︁
𝑖=1

𝜆𝑖 ≥ (1− 2Δ√
𝜀′
)2 ≥ 1− 4Δ√

𝜀′
.

From the definition of the smooth max-entropy (3.13), we see that this statement is equivalent to

𝑆
4Δ√
𝜀′

max(Ω𝐴) ≤ log𝐷 + log(𝑏− 1).

Since 𝑆
4Δ√

𝜀
max(Ω𝐴) ≤ 𝑆

4Δ√
𝜀′

max(Ω𝐴), we conclude that

𝑆
4Δ√

𝜀
max(Ω𝐴) ≤ log𝐷 + log(𝑏− 1).

Now, consider the following two cases:

1) 𝜀 ≥ 𝜆1: From the definition of 𝑏,

𝜀′ =
∑︁
𝑖<𝑏

𝜆𝑖 ≤ 𝜀+ 𝜆𝑏 ≤ 2𝜀.

Since 𝜆𝑖 are arranged in descending order, we also have 𝜀′ ≥ (𝑏− 1)𝜆𝑏−1. This implies

log(𝑏− 1) ≤ log 𝜀′ + log
1

𝜆𝑏−1
≤ log(2𝜀) + log

1

𝜆𝑏
.
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By Definition 48, log 1
𝜆𝑏

= 𝑆𝜀
′

min(Ω𝐴) ≤ 𝑆2𝜀
min(Ω𝐴). From this, we conclude that

𝑆
4Δ√

𝜀
max(Ω𝐴)− 𝑆2𝜀

min(Ω𝐴) ≤ log𝐷 + log(2𝜀) ≤ log𝐷 + 1.

2) 𝜀 < 𝜆1: In this case, 𝑏 = 2. Thus, 𝑆
4Δ√

𝜀
max(Ω𝐴) ≤ log𝐷. Since 𝑆2𝜀

min(Ω𝐴) ≥ 0, we have

𝑆
4Δ√

𝜀
max(Ω𝐴)− 𝑆2𝜀

min(Ω𝐴) ≤ log𝐷 ≤ log𝐷 + 1.

By plugging in the value of 𝜀 = (2Δ)2/3, we arrive at (3.17) which concludes the proof. ⊓⊔

Theorem 52 implies that we can bound the entanglement spread in the ground state by finding
an appropriate AGSP. In the next sections, we achieve this using two distinct approaches. First in
Section 3.7, we use the phase estimation algorithm to construct an AGSP for a gapped Hamiltonian
on an arbitrary graph with 𝐷 = 𝑂(|𝜕𝐴|/𝛾). Next in Section 3.8, we find an AGSP using the
Chebyshev polynomial with a quadratically improved scaling of 𝐷 = 𝑂(

√︀
|𝜕𝐴|/𝛾).

3.7 AGSP for general graphs using quantum phase estimation

Here, we prove in detail how a distributed version of the quantum phase estimation can be used to
test gapped ground states. This is done in three parts. In Section 3.7.1, we review the Hamiltonian
simulation algorithm based on the interaction picture. Then in Section 3.7.2, we turn this algorithm
into a communication protocol. Finally in Section 3.7.3, we combine the Hamiltonian simulation
protocol with the quantum phase estimation to obtain an AGSP.

3.7.1 Hamiltonian simulation in the interaction picture

In this section, we describe a communication protocol between Alice and Bob that allows them to
approximately implement the evolution operator 𝑒−𝑖𝑡𝐻 = 𝑒−𝑖𝑡(𝐻𝐴+𝐻𝐵+𝐻𝜕𝐴) using 𝑂̃(||𝐻𝜕𝐴||𝑡) qubits
of communication. The conventional Hamiltonian simulation techniques work in the Schrödinger
picture. Naively using these techniques results in communication complexity that scales with ||𝐻||
instead of ||𝐻𝜕𝐴 ||. To get around this issue, we instead use the recent Hamiltonian simulation
algorithm in the interaction picture [LW18] along with the Linear Combination of Unitaries (LCU)
method [BCC+15].

In the Hamiltonian simulation, the goal is to prepare the state |𝜓(𝑡)⟩ = 𝑒−𝑖𝑡(𝐻𝐴+𝐻𝐵+𝐻𝜕𝐴)|𝜓(0)⟩
for any initial state |𝜓(0)⟩. This is conventionally done by directly implementing the uni-
tary 𝑒−𝑖𝑡(𝐻𝐴+𝐻𝐵+𝐻𝜕𝐴). In the interaction picture, we work in the rotating frame |𝜓𝐼(𝑡)⟩ :=
𝑒𝑖𝑡(𝐻𝐴+𝐻𝐵)|𝜓(𝑡)⟩. There, the evolution of a time-independent Hamiltonian 𝐻 is transformed to
the evolution by a time-dependent Hamiltonian

d

d𝑡
|𝜓𝐼(𝑡)⟩ = −𝑖𝐻𝐼(𝑡)|𝜓𝐼(𝑡)⟩ (3.20)

𝐻𝐼(𝑡) = 𝑒𝑖𝑡(𝐻𝐴+𝐻𝐵)𝐻𝜕𝐴𝑒
−𝑖𝑡(𝐻𝐴+𝐻𝐵). (3.21)
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We can divide the evolution of duration 𝑡 to 𝐿 shorter segments of length 𝜏 = 𝑡/𝐿. The state |𝜓(𝑡)⟩
can be expressed in this picture by

|𝜓(𝑡)⟩ = 𝑒−𝑖𝑡(𝐻𝐴+𝐻𝐵)|𝜓𝐼(𝑡)⟩ =
(︁
𝑒−𝑖𝜏(𝐻𝐴+𝐻𝐵)𝒯

[︁
𝑒−𝑖

∫︀ 𝜏
0 𝐻𝐼(𝑠)𝑑𝑠

]︁)︁𝐿
|𝜓(0)⟩, (3.22)

where 𝒯
[︀
exp

(︀
−𝑖
∫︀ 𝜏
0 𝐻𝐼(𝑠)𝑑𝑠

)︀]︀
is the time-ordered propagator. One advantage of working in the

interaction picture is that ||𝐻𝐼(𝑡)|| = ||𝐻𝜕𝐴||. Hence, the cost of implementing the propagation
operator 𝒯

[︀
exp

(︀
−𝑖
∫︀ 𝜏
0 𝐻𝐼(𝑠)𝑑𝑠

)︀]︀
scales with ||𝐻𝜕𝐴|| instead of ||𝐻𝐴||.

Lemma 53 (cf. [LW18], Lemma 5). The time-ordered propagator can be written as

𝒯
[︁
𝑒−𝑖

∫︀ 𝜏
0 𝐻𝐼(𝑠)𝑑𝑠

]︁
= lim

𝑀,𝐾→∞

𝐾∑︁
𝑘=0

(−𝑖𝜏)𝑘
𝑀𝑘

∑︁
0≤𝑚1<···<𝑚𝑘<𝑀

𝐻𝐼(𝑚𝑘𝜏/𝑀) · · ·𝐻𝐼(𝑚1𝜏/𝑀). (3.23)

The order of the 𝑀,𝐾 limit and the speed of convergence will not matter to us since we will
see that our communication cost is completely independent of 𝑀,𝐾.

The boundary term 𝐻𝜕𝐴 can be decomposed as a sum of unitary operators, i.e.,

𝐻𝜕𝐴 =
𝐽∑︁
𝑗=1

𝛽𝑗𝑢
(𝐴)
𝑗 ⊗ 𝑢

(𝐵)
𝑗 ,

where 𝑢(𝐴)𝑗 (𝑢(𝐵)
𝑗 ) acts on Alice’s (Bob’s) spins. We can always absorb the phase of 𝛽𝑗 in 𝑢(𝐴)𝑗 and

assume 𝛽𝑗 > 0. Similarly, the interaction Hamiltonian is

𝐻𝐼(𝑚𝑘𝜏/𝑀) =

𝐽∑︁
𝑗=1

𝛽𝑗(𝑒
𝑖𝑚𝑘𝐻𝐴𝜏/𝑀𝑢

(𝐴)
𝑗 𝑒−𝑖𝑚𝑘𝐻𝐴𝜏/𝑀 )⊗ (𝑒𝑖𝑚𝑘𝐻𝐵𝜏/𝑀𝑢

(𝐵)
𝑗 𝑒−𝑖𝑚𝑘𝐻𝐵𝜏/𝑀 ).

By plugging this into (3.23), we see that the time-ordered propagator can be expressed as a linear
combination of unitary operators. For convenience, we define a collective index set

𝐼𝑀,𝐾 = {(𝑘,𝑚1, . . . ,𝑚𝑘, 𝑗1, . . . , 𝑗𝑘) : 0 ≤ 𝑘 ≤ 𝐾, 0 ≤ 𝑚1 < · · · < 𝑚𝑘 < 𝑀, 𝑗1, . . . , 𝑗𝑘 ∈ [𝐽 ]}.

For some ℓ = (𝑘,𝑚1, . . . ,𝑚𝑘, 𝑗1, . . . , 𝑗𝑘), define

𝛼ℓ = (𝜏𝑘/𝑀𝑘)𝛽𝑗𝑘 . . . 𝛽𝑗1 ,

𝑣
(𝐴)
ℓ = (−𝑖)𝑘(𝑒𝑖𝑚𝑘𝐻𝐴𝜏/𝑀𝑢

(𝐴)
𝑗𝑘
𝑒−𝑖𝑚𝑘𝐻𝐴𝜏/𝑀 ) . . . (𝑒𝑖𝑚1𝐻𝐴𝜏/𝑀𝑢

(𝐴)
𝑗1
𝑒−𝑖𝑚1𝐻𝐴𝜏/𝑀 ),

𝑣
(𝐵)
ℓ = (𝑒𝑖𝑚𝑘𝐻𝐵𝜏/𝑀𝑢

(𝐵)
𝑗𝑘
𝑒−𝑖𝑚𝑘𝐻𝐵𝜏/𝑀 ) . . . (𝑒𝑖𝑚1𝐻𝐵𝜏/𝑀𝑢

(𝐵)
𝑗1
𝑒−𝑖𝑚1𝐻𝐵𝜏/𝑀 ).

Note that

lim
𝑀,𝐾→∞

∑︁
ℓ∈𝐼𝑀,𝐾

𝛼ℓ = exp(𝜏
𝐽∑︁
𝑗=1

𝛽𝑗). (3.24)

where 𝐽 is the number of unitaries in the decomposition 𝐻𝜕𝐴 =
∑︀𝐽

𝑗=1 𝛽𝑗𝑢
(𝐴)
𝑗 ⊗ 𝑢

(𝐵)
𝑗 . Using this
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notation, Lemma 53 can be expressed as

𝒯
[︁
𝑒−𝑖

∫︀ 𝜏
0 𝐻𝐼(𝑠)𝑑𝑠

]︁
= lim

𝑀,𝐾→∞

∑︁
ℓ∈𝐼𝑀,𝐾

𝛼ℓ 𝑣
(𝐴)
ℓ ⊗ 𝑣

(𝐵)
ℓ . (3.25)

3.7.2 Communication protocol for Hamiltonian simulation

Our results regarding the ground-state entanglement and the communication complexity are infor-
mation theoretic in nature. In particular, the running time or other algorithmic aspects of the tools
we use, such as the Hamiltonian simulation, do not affect our conclusions. Here, we explain how we
can use this observation to simplify the analysis of a part of our protocol.

In the LCU method, we express the Hamiltonian simulation operator 𝑈(𝑡) as sum of unitaries
𝑈(𝑡) ≈∑︀𝑘 𝛼𝑘𝑢

(𝐴)
𝑘 ⊗𝑢(𝐵)

𝑘 for some choice of coefficients 𝛼𝑘 ∈ R and unitaries 𝑢(𝐴)𝑘 and 𝑢(𝐵)
𝑘 that act

on Alice and Bob’s qudits respectively. Such decomposition as a sum of unitaries could come from
the truncation of a Taylor expansion. To keep the running time efficient such Taylor expansions are
truncated at low orders.

When Alice and Bob jointly implement the LCU algorithm, they need to prepare and share the
ancillary state |𝛼⟩ = (

∑︀
𝑘 𝛼𝑘)

−1/2
∑︀

𝑘

√
𝛼𝑘|𝑘⟩𝐴0 |𝑘⟩𝐵0 . Then, they proceed by applying the unitaries

𝑢
(𝐴)
𝑘 ⊗𝑢

(𝐵)
𝑘 conditioned on their register |𝑘⟩. Now suppose instead of truncating the expansions, we

continue adding higher terms. Of course, the issue is that the number of coefficients 𝛼𝑘 and thus,
the communication cost of sharing |𝛼⟩ and reflecting about |𝛼⟩ also increases. On the other hand,
we know that if instead of |𝛼⟩, the parties share a maximally entangled state, the bound (3.5) on
the entanglement spread remains intact. In other words, it is not the number of exchanged ancillary
qubits in the protocol, but their entanglement spread that affects our final bound (3.5).

We fix this problem by modifying the LCU algorithm such that instead of the state |𝛼⟩, Alice
and Bob only share the maximally entangled state (or equivalently some number of EPR pairs).
This state only needs to be shared once, which can be done outside the protocol, and then many
reflections about it can be done with a cost independent of the size of the state. Now we can keep
an unbounded number of terms in the expansions and avoid similar approximations in our protocol.
This blows up the running time of these procedures, but maintains the communication complexity.

In the following we show how this can be achieved more formally. Our first step is to prove how
using 𝑂 (log(1/𝜀)) qubits, Alice and Bob can perform a reflection about the maximally entangled
state |Φ𝑝⟩ = 1√

𝑝

∑︀𝑝
𝑗=1 |𝑗⟩𝐴0 |𝑗⟩𝐵0 with an arbitrary dimension 𝑝 up to an error 𝜀. The proof follows

from the EPR testing protocol (i.e. performing the two-outcome measurement {Φ𝑝,1 − Φ𝑝}) of
[AHL+14].

Theorem 54 (Reflection about |Φ𝑝⟩, cf. [AHL+14]). For any 𝑝 and any 𝜀 > 0, there exists a protocol
for performing 1−2Φ𝑝, the reflection about the maximally entangled state, using 𝑂 (log(1/𝜀)) qubits
of communication.

Next we focus on the Hamiltonian simulation protocol and analyze its communication cost.

Theorem 55 (Communication protocol for Hamiltonian simulation). There exists a communication
protocol between Alice and Bob, summarized in Protocol 1, that uses a shared maximally entangled
state |Φ𝑝⟩ for an arbitrarily large 𝑝 and 𝑂(𝑡|𝜕𝐴| log(𝑡|𝜕𝐴|/𝜀)) extra qubits of communication and
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implements an operator 𝑊𝑡 such that⃒⃒⃒⃒
𝑊𝑡|Φ𝑝⟩|𝜓⟩ − |Φ𝑝⟩𝑒−𝑖𝑡(𝐻𝐴+𝐻𝜕𝐴+𝐻𝐵)|𝜓⟩

⃒⃒⃒⃒
≤ 𝜀. (3.26)

Proof of Theorem 55. The evolution is divided into 𝐿 segments of length 𝜏 as in (3.22). In each seg-
ment, the operator 𝑒−𝑖𝜏(𝐻𝐴+𝐻𝐵) = 𝑒−𝑖𝜏𝐻𝐴𝑒−𝑖𝜏𝐻𝐵 can be implemented without any communication.
Thus we focus on the cost of performing the time-ordered propagator 𝒯

[︀
exp

(︀
−𝑖
∫︀ 𝜏
0 𝐻𝐼(𝑠)𝑑𝑠

)︀]︀
.

Following [LW18, BCC+15], we use the LCU method to simulate the time-ordered operator
given as a sum of unitaries in (3.25). In the original LCU algorithm, to implement a sum of
unitaries such as

∑︀
ℓ∈𝐼𝑀,𝐾

𝛼ℓ 𝑣
(𝐴)
ℓ ⊗ 𝑣

(𝐵)
ℓ . Alice and Bob need to share (and later reflect about) the

state
∑︀

ℓ∈𝐼𝑀,𝐾

√
𝛼ℓ|ℓ⟩𝐴0 |ℓ⟩𝐵0 . In general, sharing such a state results in extra entanglement spread

between the parties. To avoid this, we modify the sum in (3.25) so that all 𝛼ℓ are equal and Alice
and Bob can instead use their shared maximally entangled state |Φ𝑝⟩ which has zero entanglement
spread.

We achieve this by rounding off the coefficients 𝛼ℓ to the nearest multiple of 𝑘𝛿 = 2−⌈log(𝛿−1)⌉

denoted by 𝛼̃ℓ such that |𝛼ℓ − 𝛼̃ℓ| ≤ 𝛿 ≪ 1. The choice of 𝛿 depends on 𝑀 and 𝐾. In particular as
𝑀,𝐾 → ∞, we have 𝛿 → 0. We can re-express the sum in (3.25) by repeating each term 𝑣

(𝐴)
ℓ ⊗𝑣(𝐵)

ℓ

for 𝛼̃ℓ/𝑘𝛿 times. This means for a fixed 𝑀 , 𝐾, and 𝛿, Alice and Bob wish to implement the sum

𝑘𝛿 ·
𝑝∑︁
ℓ=1

𝑣
(𝐴)
ℓ ⊗ 𝑣

(𝐵)
ℓ (3.27)

with some extended set of indices ℓ with size 𝑝 ≤ ∑︀
ℓ∈𝐼𝑀,𝐾

⌈𝛼ℓ/𝑘𝛿⌉ < 𝑒𝜏
∑︀𝐽

𝑗=1 𝛽𝑗/𝑘𝛿 (using (3.24)).
The simulation protocol consists of the following steps summarized in Protocol 1:

1. Alice and Bob perform the following operator on the state |𝜓⟩ and the maximally entangled
state |Φ𝑝⟩ = 1√

𝑝

∑︀𝑝
ℓ=1 |ℓ⟩𝐴0 |ℓ⟩𝐵0 shared between them:

SEL = SEL𝐴0𝐴⊗SEL𝐵0𝐵

SEL𝐴0𝐴 =

𝑝∑︁
ℓ=1

|ℓ⟩⟨ℓ|𝐴0 ⊗ 𝑣
(𝐴)
ℓ

SEL𝐵0𝐵 =

𝑝∑︁
ℓ=1

|ℓ⟩⟨ℓ|𝐵0 ⊗ 𝑣
(𝐵)
ℓ .

To implement this, Alice (Bob) applies the unitary 𝑣(𝐴)ℓ (𝑣(𝐵)
ℓ ) on their spins conditioned on

register |ℓ⟩𝐴0 (|ℓ⟩𝐵0). Hence, the operator SEL can be implement by the parties only using
local unitaries. Their state after this step is

SEL |Φ𝑝⟩|𝜓⟩ =
1√
𝑝

𝑝∑︁
ℓ=1

|ℓ⟩𝐴0 |ℓ⟩𝐵0 ⊗
(︁
𝑣
(𝐴)
ℓ ⊗ 𝑣

(𝐵)
ℓ

)︁
|𝜓⟩ (3.28)

2. Next, the parties implement the oblivious amplitude amplification subroutine [BCC+15]
which for given any state |𝜓⟩, turns the state SEL |Φ𝑝⟩|𝜓⟩ into the desired state
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|Φ𝑝⟩
(︁∑︀

ℓ 𝑘𝛿 𝑣
(𝐴)
ℓ ⊗ 𝑣

(𝐵)
ℓ

)︁
|𝜓⟩ using a “Grover type” rotation. In our setting, this means the

parties apply the rotation operator −SEL(2Φ𝑝 − 1) SEL†(2Φ𝑝 − 1). It is shown in [BCC+15]
that if

∑︀
ℓ∈𝐼𝑀,𝐾

𝛼̃ℓ = 2, one application of this operator suffices. It follows from Eq. (3.24)
that in the limit of 𝑀,𝐾 → ∞ and 𝛿 → 0,

∑︀
ℓ∈𝐼𝑀,𝐾

𝛼̃ℓ = exp(𝜏
∑︀𝐽

𝑗=1 𝛽𝑗). Hence, if 𝑡 ·∑︀𝐽
𝑗=1 𝛽𝑗

is a multiple of ln(2), we can choose the number of segments as 𝐿 = 𝑡
∑︀

𝑗 𝛽𝑗/ ln(2) = 𝑂 (𝑡|𝜕𝐴|)
to ensure

∑︀
ℓ∈𝐼𝑀,𝐾

𝛼̃ℓ = 2. Otherwise, we set 𝐿 = ⌈𝑡∑︀𝑗 𝛽𝑗/ ln(2)⌉ and adjust the angle be-
tween the initial and target states in the last segment by appending an additional ancillary
register 𝑒𝑖𝜃𝑋 |0⟩ with a suitably small 𝜃.
Similar to step 1, the operators −SEL and SEL† are performed locally. The reflection operator
2Φ𝑝−1 is performed using the protocol in Theorem 54. For an overall error of 𝜀, we need error
𝜀/𝐿 per segment, which requires 𝑂 (log(𝐿/𝜀)) = 𝑂 (log(𝑡|𝜕𝐴|/𝜀)) qubits of communication per
segment.
In the described protocol, we can take 𝑀,𝐾 → ∞. By doing so 𝛿 → 0. This will only increase
the size 𝑝 of the shared maximally entangled state |Φ𝑝⟩ and not the qubits communicated
when implementing 2Φ𝑝 − 1.
The state after performing oblivious amplitude amplification is

(︁
−SEL(2Φ𝑝 − 1) SEL†(2Φ𝑝 − 1)

)︁
SEL |Φ𝑝⟩|𝜓⟩ ≈𝜀/𝐿 |Φ𝑝⟩

(︃∑︁
ℓ′

𝑘𝛿 𝑣
(𝐴)
ℓ′ ⊗ 𝑣

(𝐵)
ℓ′

)︃
|𝜓⟩. (3.29)

3. Alice performs 𝑒−𝑖𝜏𝐻𝐴 and Bob performs 𝑒−𝑖𝜏𝐻𝐵 on their spins.

4. They repeat the steps 1-3 for 𝐿 = 𝑂 (𝑡|𝜕𝐴|) times.

Hence, the number of qubits exchanged during the whole protocol is 𝑂(𝑡|𝜕𝐴| log(𝑡|𝜕𝐴|/𝜀)). ⊓⊔

Protocol 1 Hamiltonian simulation protocol between Alice and Bob
Input: Unbounded shared maximally entangled state |Φ⟩, a shared state |𝜓⟩, 𝐻 and 𝑡.
Goal: Implement 𝑊𝑡 such that ||𝑊𝑡|Φ⟩|𝜓⟩ − |Φ⟩𝑒−𝑖𝑡𝐻 |𝜓⟩|| ≤ 𝜀.
Procedure:
For 𝐿 = 𝑂 (𝑡|𝜕𝐴|) times, perform the following protocol:

1. Alice and Bob implement SEL |Φ⟩|𝜓⟩ by applying local controlled-unitaries,

2. Using the protocol in Theorem 54, Alice and Bob approximately perform the rotation operator(︀
−SEL(2Φ− 1) SEL†(2Φ− 1)

)︀
using 𝑂 (log(𝑡|𝜕𝐴|/𝜀)) qubits of communication. The parties

use 𝑂(1) qubits of communication in the 𝐿’th iteration to adjust the angle between states in
the oblivious amplitute amplification subroutine (see step 2 of the proof of Theorem 55).

3. Alice applies 𝑒−𝑖𝐻𝐴𝑡/𝐿 and Bob applies 𝑒−𝑖𝐻𝐵𝑡/𝐿 locally.

3.7.3 A communication protocol for measuring the ground state

In this section, we use the Hamiltonian simulation protocol of Section 3.7.1 along with the quantum
phase estimation algorithm to implement an approximate version of the measurement {Ω,1− Ω}.
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The phase estimation algorithm is an operator PHASE that is implemented on some target
state |𝜓⟩ in the following steps. (1) Starting with 𝑓 = log (1/(𝛾𝑡0)) + 𝑂 (1) ancillary qubits in
the |0⟩ state, a uniform superposition 1√

2𝑓

∑︀2𝑓−1
𝑗=0 |𝑗𝑡0⟩ is created. Here, the parameter 𝑡0 is chosen

such that |𝜕𝐴|𝑡0 ≪ 1 and following the discussion in the beginning of Section 3.7.2, we simply
consider the limit 𝑡0 → 0 at the end. Hence, this register is a uniform superposition over time steps
{0, 𝑡0, 2𝑡0, . . . , 𝑂(1/𝛾)}. (2) Controlled on the register |𝑗𝑡0⟩, the Hamiltonian simulation operator
𝑒𝑖𝑗𝑡0𝐻 is performed on the target state |𝜓⟩. (3) Finally, an inverse Fourier transform is applied to
the ancillary registers. The action of this operator on the eigenstates of 𝐻 is (assuming that the
𝑒−𝑖𝑡𝐻 oracle is perfect):

PHASE |0⟩|Ω⟩ = |0⟩|Ω⟩
PHASE |0⟩|𝐸𝑖⟩ =

√
𝜎𝑖|0⟩|𝐸𝑖⟩+

√
1− 𝜎𝑖|0⊥𝑖 ⟩|𝐸𝑖⟩, ∀𝑖 ≥ 1,

where the |𝜎𝑖| are all less than some universal constant 𝜎 < 1 and the states |0⊥𝑖 ⟩ are all orthogonal
to |0⟩. By repeating this operator for 𝑂 (log(1/Δ)) times in parallel, we can reduce the error to
≤ Δ. Let us define the two-outcome POVM {𝐾,1−𝐾} such that

𝐾 = PHASE†(|0⟩⟨0| ⊗ 1) PHASE .

We see that {𝐾,1 − 𝐾} provides a good approximation to the measurement {Ω,1 − Ω} that we
intend to perform [CSS18, Equation 10-12]:

|| (𝐾 − 1⊗ |Ω⟩⟨Ω|) |0⟩|𝜓⟩|| ≤ Δ. (3.30)

In our EPR-assisted communication protocol for implementing the PHASE operator, the Hamil-
tonian simulation is implemented approximately, hence introducing an additional error in (3.30).
Moreover, we modify steps (1) and (3) in the above description of the phase estimation algorithm
to replace the ancillary registers with the available shared EPR pairs. In step (1), the parties use
their shared EPR states instead of preparing a uniform superposition starting from |0⟩. In Step (3),
instead of performing the inverse Fourier transform and the measurement {|0⟩⟨0|,1− |0⟩⟨0|}, Alice
and Bob jointly perform the equivalent EPR testing measurement {Φ,1− Φ} as in [AHL+14] (see
also Theorem 54). In the following, we give the details of this protocol (Protocol 2) and its analysis
which shows how to implement the two-outcome measurement {𝐾,1−𝐾}.

Theorem 56 (Communication protocol for measuring the ground state). Following Protocol 2,
Alice and Bob can implement a measurement {𝐾,1−𝐾} such that

|| (𝐾 − 1⊗ |Ω⟩⟨Ω|) |0⟩|Φ⟩|𝜓⟩|| ≤ Δ

while sharing unlimited EPR pairs |Φ⟩ and with the communication cost

𝑂

(︂ |𝜕𝐴|
𝛾

log

(︂ |𝜕𝐴|
𝛾Δ

log
1

Δ

)︂
log

1

Δ

)︂
. (3.31)

Proof. The phase estimation algorithm PHASE is repeated 𝑂 (log(1/Δ)) times. In each applica-
tion, the Hamiltonian simulation Protocol 1 is run once for time up to 𝑂(|𝜕𝐴|/𝛾). According to
Theorem 55, the communication cost of implementing Protocol 1 in each round is bounded by
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Protocol 2 Protocol for measuring the ground state
Input: Unbounded shared maximally entangled state |Φ⟩, ancillary state |0⟩, a shared state |𝜓⟩,
and the Hamiltonian 𝐻.
Goal: Perform POVM {𝐾,1−𝐾} such that || (𝐾 − 1⊗ 1⊗ |Ω⟩⟨Ω|) |0⟩|Φ⟩|𝜓⟩|| ≤ Δ.
Procedure:

1. For 𝑘 = 𝑂 (log(1/Δ)) times, repeat the following steps i.-iii. to perform the operator PHASE
𝑘 times in parallel:

i. Using their unlimited EPR pairs available, Alice and Bob share the state |Φ𝑓 ⟩ =
1

2𝑓/2

∑︀2𝑓−1
𝑗=0 |𝑗𝑡0⟩𝑎𝑘 |𝑗𝑡0⟩𝑏𝑘 for 𝑓 = log (1/(𝛾𝑡0)) +𝑂 (1) and some 𝑡0 → 0.

ii. Conditioned on registers |𝑗⟩𝑎𝑘 |𝑗⟩𝑏𝑘 , the parties implement the Hamiltonian simulation
protocol 𝑊𝑗 (Protocol 1) on the state |𝜓⟩.

iii. Using additional ancillary states, they jointly implement the EPR testing protocol of
[AHL+14] that approximately implements the two-outcome measurement {Φ𝑓 ,1 − Φ𝑓}
on registers 𝑎𝑘 ⊗ 𝑏𝑘.

2. If all the 𝑘 EPR tests in step iii. accept, the parties accept (the outcome corresponding to
measuring 𝐾), otherwise they reject (the outcome corresponding to measuring 1−𝐾).

𝑂
(︁
|𝜕𝐴|
𝛾 log

(︁
|𝜕𝐴|
𝛾𝜀

)︁)︁
. Additionally, the EPR testing in step iii. of Protocol 2 requires a communica-

tion cost of 𝑂 (log(1/𝜀)) to achieve an error of 𝑂(𝜀). In order to have an overall error of 𝑂(Δ) in
the phase estimation, it suffices choose

𝜀 = 𝑂

(︂
Δ

log(1/Δ)

)︂
.

Adding these costs, we get (3.31). Note that taking 𝑡0 → 0 in Protocol 2 only blows up the local
running time of Alice and Bob who call the Hamiltonian simulation oracle conditioned on |𝑗𝑡0⟩. ⊓⊔

3.8 AGSP for lattice Hamiltonians using Chebyshev polynomials

The construction of an AGSP based on the Chebyshev polynomials relies heavily on the truncation
of the Hamiltonian. The idea of truncation, introduced in [AKLV13], allows one to control the norm
of Hamiltonian away from a bipartite cut. In this section we (1) review the previous techniques for
truncation in frustration-free and general Hamiltonians and (2) adapt them from 1D systems to an
arbitrary lattice. First, we explain how to perform truncation in the frustration-free case.

3.8.1 Truncation: frustration-free case

Without loss of generality, we assume that ℎ𝑘 are projectors and the ground energy 𝐸0 = 0. Let
DL be the detectability lemma operator [AALV09] corresponding to 𝐻 defined as follows.

Definition 57 (Detectability lemma operator). Partition the terms of the Hamiltonian 𝐻 =∑︀𝑁
𝑖=𝑘 ℎ𝑘 into 𝑤 groups {𝑇1, . . . 𝑇𝑤}, where the terms in each group mutually commute. For a finite
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dimensional lattice, 𝑤 is a constant. The detectability lemma operator is defined by

DL =

𝑤∏︁
𝛼=1

⎛⎝∏︁
𝑘∈𝑇𝛼

(1− ℎ𝑘)

⎞⎠ .

The operator DL defines an AGSP for the Hamiltonian 𝐻. In particular, since 𝐻 is frustration-
free, the terms 1− ℎ𝑘 preserve the ground state and we have DL |Ω⟩ = |Ω⟩. Since ||DL || ≤ 1, when
this operator is applied to the states orthogonal to |Ω⟩, their norm shrinks by a factor ≤ 1. More
precisely, it is shown in [AALV09, AAV16] that we have

DL |Ω⟩ = |Ω⟩, ‖DL−|Ω⟩⟨Ω|‖ ≤ 1

1 + 𝛾/𝑔2
. (3.32)

where 𝛾 is the spectral gap and 𝑔 is the number of interactions in the Hamiltonian not commuting
with a given interaction ℎ𝑘.

Remark 58. For a 𝐷-dimensional lattice with a 𝜅-local Hamiltonian, we have 𝑤 ≤ (2𝐷)2𝜅 and
𝑔 ≤ 𝜅(2𝐷)𝜅−1 (see for instance, [AAV16, Section II])

In order to obtain a truncation for the Hamiltonian 𝐻, which as we explain later allows us to
control the norm of Hamiltonian away from a bipartite cut, we consider a slightly different AGSP
than DL. Consider any bipartition (𝐴 : 𝐵) of the lattice. Let Π𝐴 be the projector onto the ground
space of the Hamiltonian 𝐻𝐴 and Π𝐵 be the projector onto the ground space of 𝐻𝐵. Let 𝐶 be the set
of all interactions contained within 𝜕𝑤𝐴. Using the “absorption” argument from [AALV09, ALV12],
the following equality can be shown:

(Π𝐴Π𝐵)DL = Π𝐴Π𝐵

𝑤∏︁
𝛼=1

⎛⎝ ∏︁
𝑘∈𝑇𝛼∩𝐶

(1− ℎ𝑘)

⎞⎠ , (3.33)

which can be verified by noticing that (1−ℎ𝑘)Π𝑅 = Π𝑅, where Π𝑅 is the projector onto the ground
space of a region 𝑅 on which ℎ𝑘 is supported, we can absorb terms from DL into Π𝐴Π𝐵 except for
those that are hindered due to the boundary.

By applying (3.33) in (3.32), and using Π𝐴Π𝐵|Ω⟩ = |Ω⟩, we conclude that (Π𝐴Π𝐵)DL is also
an AGSP, i.e. ⃒⃒⃒⃒

⃒⃒
⃒⃒⃒⃒
⃒⃒Π𝐴Π𝐵 𝑤∏︁

𝛼=1

⎛⎝ ∏︁
𝑘∈𝑇𝛼∩𝐶

(1− ℎ𝑘)

⎞⎠− |Ω⟩⟨Ω|

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒ ≤ 1

1 + 𝛾/𝑔2
. (3.34)

Next, we use this operator to truncate the Hamiltonian 𝐻 outside some region 𝐴.

Definition 59 (Truncated Frustration-free Hamiltonian). The truncation of a frustration-free
Hamiltonian 𝐻 with respect to the partition (𝐴 : 𝐵) is defined by:

𝐻̃ =
∑︁

𝛼,𝑘∈𝑇𝛼∩𝐶
ℎ𝑘 + (1−Π𝐴) + (1−Π𝐵), (3.35)

Theorem 60 (Truncation in the frustration-free case). The truncated Hamiltonian 𝐻̃ has the fol-
lowng properties:
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1. 𝐻̃ is frustration free

2. ||𝐻̃|| ≤ 2 + 𝑤2|𝜕𝐴|

3. the spectral gap of 𝐻̃ is ≥ 𝛾/4𝑔2

Proof. One can see that |Ω⟩ is a ground state of 𝐻̃. In order to lower bound the spectral gap of
𝐻̃, we use the fact that the detectability lemma operator and the Hamiltonian have very similar
spectral gaps. This was described as a converse to the detectability lemma in [AAV16]. More
precisely, using Theorem 1.1b of [Gao15], we obtain that for any state |𝜓⟩,

4⟨𝜓|𝐻̃|𝜓⟩ ≥ 1−

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒Π𝐴Π𝐵 𝑤∏︁

𝛼=1

⎛⎝ ∏︁
𝑘∈𝑇𝛼∩𝐶

(1− ℎ𝑘)

⎞⎠ |𝜓⟩

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
2

.

If |𝜓⟩ is orthogonal to |Ω⟩, (3.34) ensures that

4⟨𝜓|𝐻̃|𝜓⟩ ≥ 1−
(︂

1

1 + 𝛾/𝑔2

)︂2

≥ 𝛾

𝑔2
.

Thus the spectral gap of 𝐻̃ is at least 𝛾
4𝑔2

. Finally we can bound the norm with

||𝐻̃|| ≤ ||1−Π𝐴||+ ||1−Π𝐵||+
∑︁

𝛼,𝑘∈𝑇𝛼∩𝐶
||ℎ𝑘|| ≤ 2 + 𝑤2|𝜕𝐴|

⊓⊔

3.8.2 Truncation: frustrated case

Here, we consider truncation in the more general case of frustrated Hamiltonians. This is first
achieved in [AKLV13]. We will directly use the following theorem from [KS20a], which built upon
[AKL16]. For a partition (𝐴 : 𝐵), the truncation in [AKL16] is defined by removing the high energy
spectrum of 𝐻𝐵. The improvement in [KS20a] allows one to truncate both 𝐻𝐴 and 𝐻𝐵 while leaving
the boundary term 𝐻𝜕𝑤𝐴 untouched, where 𝑤 = 𝑂(1).

Definition 61 (Truncation of 𝐻 up to energy 𝜉). Fix a bipartition (𝐴 : 𝐵) such that 𝐻 = 𝐻𝐴 +

𝐻𝐵 +𝐻𝜕𝑤𝐴 and 𝑤 = 𝑂(1). Let Π<𝜉𝐴 and Π≥𝜉
𝐴 denote the projectors onto the eigenstates of 𝐻𝐴 with

energy < 𝜉 and ≥ 𝜉 respectively. Similarly, we assign Π<𝜉𝐵 and Π≥𝜉
𝐵 for region 𝐵. The truncation

of 𝐻𝐴 (or 𝐻𝐵) up to energy 𝜉 is defined as

𝐻̃𝐴 = 𝐻𝐴Π
<𝜉
𝐴 + 𝜉Π≥𝜉

𝐴 .

Moreover, the truncation of 𝐻 up to energy 𝜉 with respect to the partition (𝐴 : 𝐵) is defined by

𝐻̃ = 𝐻̃𝐴 + 𝐻̃𝐵 +𝐻𝜕𝑤𝐴.

Theorem 62 (Truncation in the frustrated case, cf. [KS20a], Theorem 5). Let 𝐻̃ be the truncation
of the Hamiltonian 𝐻 with respect to the partition (𝐴 : 𝐵) up to energy 𝜉 = 𝑂

(︁
𝑤2|𝜕𝑤𝐴|+ log 1

𝛾

)︁
,

where 𝑤 = 𝑂(1). Then, it holds that
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i. The spectral gap of 𝐻̃ is at least 𝛾
2 ,

ii. The ground state |Ω′⟩ of 𝐻̃ satisfies |⟨Ω|Ω′⟩| ≥ 1− 𝑒−0.1|𝜕𝑤𝐴|,

iii. ‖𝐻̃ − 𝐸′
01‖ ≤ 100𝑤2|𝜕𝑤𝐴|, where 𝐸′

0 is the ground-state energy of 𝐻̃.

3.8.3 Chebyshev-AGSP

The previous subsections show that the Hamiltonian 𝐻 can be truncated to 𝐻̃ such that the spectral
gap stays ≥ 𝛾/2 and the norm of the Hamiltonian is at most 𝐸′

0 + 𝑂(𝑤2|𝜕𝑤𝐴|). Furthermore, the
ground state |Ω′⟩ is close to |Ω⟩ with fidelity at least 1 − 𝑒−0.1|𝜕𝑤𝐴|. This means we can instead
construct an AGSP for the ground state |Ω′⟩ of the truncated Hamiltonian 𝐻̃.

Definition 63 (Chebyshev-AGSP). Define the Chebyshev-AGSP as the following polynomial of 𝐻̃
of degree 𝑞:

𝑄𝑞(𝐻̃) =
1

𝑇𝑞

(︁
1 +

2𝐸′
1−2𝐸′

0
𝐸′

max−𝐸′
1

)︁𝑇𝑞 (︃1 + 2𝐸′
1 − 2𝐻̃

𝐸′
max − 𝐸′

1

)︃
,

where 𝐸′
max is the largest eigenvalue of 𝐻̃ and 𝑇𝑞 is the degree-𝑞 Chebyshev polynomial of the first

kind defined by 𝑇𝑞(cos 𝜃) = cos(𝑞𝜃).

The reason for this definition is that (i) 𝑄𝑞(𝐸′
0) = 1, (ii) the eigenvalues in the range [𝐸′

1, 𝐸
′
max]

are sent by 𝑥 ↦→ 1 +
2𝐸′

1−2𝑥
𝐸′

max−𝐸′
1

to the range [−1, 1] and 𝑇𝑞([−1, 1]) = [−1, 1], (iii) the denominator is

exponentially large in 𝑞2
(︁

2𝐸′
1−2𝐸′

0
𝐸′

max−𝐸′
1

)︁
. Thus it yields an AGSP with properties given by the following

theorem.

Theorem 64. There is a constant 𝜉 depending on the geometry of the Hamiltonian such that if we
let 𝑞 =

√︁
𝑤2𝑔2 |𝜕𝑤𝐴|

𝜉2𝛾
log 4

Δ , then 𝑄𝑞(𝐻̃) is a (𝐷,Δ)-AGSP with respect to the partition (𝐴 : 𝐵) (see

Definition 50). That is, ‖|Ω⟩⟨Ω| −𝑄𝑞(𝐻̃)‖ ≤ Δ and the Schmidt rank is bounded by

𝐷 = exp

(︃√︃
|𝜕𝑤𝐴|
𝛾

· log 4

Δ
· 𝑤𝑔
𝑐

· log
(︂ |𝜕𝑤𝐴|2

𝛾
𝑤2𝑔2𝑠𝑏 log2(

4

Δ
)
1

𝜉2

)︂)︃
, (3.36)

Before stating the proof of Theorem 64, we need the following lemma:

Lemma 65 (Adapted from [AKLV13]). The Schmidt rank of 𝑄𝑞(𝐻̃) is at most 𝐷 ≤ 𝑒𝑞 log(𝑞
2𝑠𝑏|𝜕𝑤𝐴|).

Proof. First, SR(𝑄𝑞(𝐻̃)) ≤ 𝑞SR(𝐻̃)𝑞. Thus, we upper bound SR(𝐻̃). In both the frustration-free
((3.35)) and the frustrated case (Theorem 62), we can write 𝐻̃ = 𝐻𝜕𝑤𝐴 + 𝑋 + 𝑌 , where 𝑋 is an
operator supported on region 𝐴 and 𝑌 is an operator acting on region 𝐵. Consider the following
expansion:

(𝐻̃)𝑞 =

𝑞+1∑︁
ℓ=1

(︁
𝑋𝑓1𝑌 𝑔1

)︁
𝐻𝜕𝑤𝐴

(︁
𝑋𝑓2𝑌 𝑔2

)︁
𝐻𝜕𝑤𝐴

(︁
𝑋𝑓3𝑌 𝑔3

)︁
. . . 𝐻𝜕𝑤𝐴

(︁
𝑋𝑓ℓ𝑌 𝑔ℓ

)︁
.
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In each term, 𝐻𝜕𝑤𝐴 occurs ℓ − 1 times, and the tuple of non-negative integers (𝑓1, 𝑔1, . . . 𝑓ℓ, 𝑔ℓ)
satisfies

ℓ∑︁
𝑖=1

(𝑓𝑖 + 𝑔𝑖) = 𝑞 − ℓ+ 1.

The number of possible such tuples is equal to
(︀
𝑞+ℓ+1

2ℓ

)︀
≤
(︀
2𝑞+2
2ℓ

)︀
≤ (𝑞 + 1)ℓ. Since none of 𝑋𝑓𝑖𝑌 𝑔𝑖

change the Schmidt rank across the bipartition, and 𝐻𝜕𝑤𝐴 changes the Schmidt rank by at most
𝑠𝑏|𝜕𝑤𝐴|, we obtain that the Schmidt rank of (𝐻̃)𝑞 is at most

(𝑠𝑏|𝜕𝑤𝐴|)𝑞 · (𝑞 + 1)𝑞+2 ≤ 𝑒𝑞 log(𝑞
2𝑠𝑏|𝜕𝑤𝐴|).

This completes the proof. ⊓⊔

Proof of Theorem 64. By a result of [AKLV13], we have

‖𝑄𝑞(𝐻̃)− |Ω′⟩⟨Ω′|‖ ≤ 2𝑒
−2𝑞

√︂
𝐸′
1−𝐸′

0
𝐸′
max−𝐸′

1 ≤ 2𝑒
−𝜉𝑞

√︁
𝛾

𝑤2𝑔2|𝜕𝑤𝐴| ,

where 𝜉 is an absolute constant determined by the lattice structure and the locality of the Hamil-
tonian. For a given Δ, choose 𝑞 =

√︁
𝑤2𝑔2 |𝜕𝑤𝐴|

𝜉2𝛾
log 4

Δ . Then

‖|Ω⟩⟨Ω| −𝑄𝑞(𝐻̃)‖ ≤ Δ.

By plugging in the choice of 𝑞 =
√︁
𝑤2𝑔2 |𝜕𝑤𝐴|

𝜉2𝛾
log 4

Δ in Lemma 65, we see that the Schmidt rank
is at most

𝐷 = exp

(︃√︃
|𝜕𝑤𝐴|
𝛾

· log 4

Δ
· 𝑤𝑔
𝜉

· log
(︂ |𝜕𝑤𝐴|2

𝛾
𝑤2𝑔2𝑠𝑏 log2(

4

Δ
)
1

𝜉2

)︂)︃
.

⊓⊔

3.9 Proof of Theorem 46

Theorem 66 (Theorem 46 restated). Fix any 𝜖 ∈ (0, 12). Let ⟨𝑂⟩ := ⟨Ω|𝑂|Ω⟩. It holds that⃒⃒⃒⃒
tr𝑂Π

𝑑
− ⟨𝑂⟩

⃒⃒⃒⃒
≤ 𝜖+

1

𝜖
· 𝑒30𝑐𝑟1−𝜅−𝑟/𝜉.

In particular, choosing 𝑟 = (60𝑐𝜉)
1
𝜅 + 2𝜉 log 1

𝜖 , we can efficiently estimate ⟨𝑂⟩ with error 2𝜖 by
computing tr𝑂Π

𝑑 .

Proof. Divide the spectrum of Ω𝐴 into 𝑁 = 2𝑐(|𝜕𝐴|)1−𝜅

𝜖 blocks, such that the ratio between smallest
and largest eigenvalues in each block is ≤ 1 + 𝜖. Let Π𝑖 be the projector onto the 𝑖th block, 𝑑𝑖 be
the dimension of Π𝑖 and 𝜆𝑖min be the smallest eigenvalue in the 𝑖th block. Since |Ω⟩ is a pure state,
there is a projector Π′

𝑖 acting on 𝐴𝑐, such that (Π𝑖 ⊗ id𝐴𝑐)|Ω⟩ = (id𝐴 ⊗Π′
𝑖)|Ω⟩.

Using decay of correlation, we can write for each block 𝑖,

|⟨Ω|(Π′
𝑖 ⊗𝑂)|Ω⟩ − ⟨Ω|Π′

𝑖|Ω⟩⟨Ω|𝑂|Ω⟩| ≤ 𝑒−𝑟/𝜉.
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Note that ⟨Ω|(Π′
𝑖⊗𝑂)|Ω⟩ = tr(𝑂Π𝑖Ω𝐴) and ⟨Ω|Π′

𝑖|Ω⟩ = tr(Π𝑖Ω𝐴) . Thus, we can rewrite the above
equation as ⃒⃒⃒⃒

tr(𝑂Π𝑖Ω𝐴)

tr(Π𝑖Ω𝐴)
− ⟨𝑂⟩

⃒⃒⃒⃒
≤ 𝑒−𝑟/𝜉

tr(Π𝑖Ω𝐴)
. (3.37)

Since all the eigenvalues in Π𝑖 are within a multiplicative factor 1 + 𝜖 of 𝜆𝑖min, we have

𝜆𝑖minΠ𝑖 ⪯ Π𝑖Ω𝐴 ⪯ (1 + 𝜖)𝜆𝑖minΠ𝑖,

and hence
(1− 𝜖)

tr(𝑂Π𝑖)

tr(Π𝑖)
≤ tr(𝑂Π𝑖Ω𝐴)

tr(Π𝑖Ω𝐴)
≤ (1 + 𝜖)

tr(𝑂Π𝑖)

tr(Π𝑖)
.

This allows us to rewrite Equation 3.37 as (also using 𝑑𝑖 = tr(Π𝑖))⃒⃒⃒⃒
tr(𝑂Π𝑖)

𝑑𝑖
− ⟨𝑂⟩

⃒⃒⃒⃒
≤ 𝜖

tr(𝑂Π𝑖)

𝑑𝑖
+

𝑒−𝑟/𝜉

tr(Π𝑖Ω𝐴)
. (3.38)

Now, we sum both sides over 𝑖, with weights 𝑑𝑖
𝑑 . Since Π =

∑︀
𝑖Π𝑖, we obtain⃒⃒⃒⃒

tr(𝑂Π)

𝑑
− ⟨𝑂⟩

⃒⃒⃒⃒
≤ 𝜖

tr(𝑂Π)

𝑑
+ 𝑒−𝑟/𝜉

∑︁
𝑖

𝑑𝑖
𝑑 tr(Π𝑖Ω𝐴)

≤ 𝜖+ 𝑒−𝑟/𝜉
∑︁
𝑖

1

𝑑𝜆𝑖min

. (3.39)

Using the entanglement spread condition, for each 𝑖 we have 𝑑𝜆𝑖min ≥ 𝑒−𝑐|𝜕𝐴|
1−𝜅

𝑑𝜆max(Ω𝐴) ≥
𝑒−𝑐|𝜕𝐴|

1−𝜅 . Since |𝜕𝐴| ≤ 10𝑟, we obtain⃒⃒⃒⃒
tr(𝑂Π)

𝑑
− ⟨𝑂⟩

⃒⃒⃒⃒
≤ 𝜖+ 𝑒−𝑟/𝜉𝑁𝑒𝑐(10𝑟)

1−𝜅 ≤ 𝜖+ 𝑒−𝑟/𝜉 · 2𝑐(|𝜕𝐴|)
1−𝜅

𝜖
· 𝑒𝑐(10𝑟)1−𝜅

≤ 𝜖+ 𝑒−𝑟/𝜉 · 1
𝜖
· 𝑒30𝑐𝑟1−𝜅

. (3.40)

This completes the proof. ⊓⊔

3.10 Proof of Proposition 47

Proposition 67 (Proposition 47 restated). Fix an AGSP

𝐾 =
∑︁
𝑖

𝛼𝑖𝑈𝑖 ⊗ 𝑉𝑖,

with 𝛼𝑖 > 0, ‖𝑈𝑖‖, ‖𝑉𝑖‖ ≤ 1, and 𝑈𝑖, 𝑉𝑖 acting on subsystem 𝐴, 𝐵 respectively. Suppose

||𝐾 − |Ω⟩⟨Ω||| ≤ Δ.

Then there exists an EPR-assisted AGSP 𝐾 ′ (as in Definition 40) with Schmidt rank
(︁∑︀

𝑖 𝛼𝑖

Δ

)︁𝒪(1)

such that

||(𝐾 ′ − 1⊗ |Ω⟩⟨Ω|) |Φ⟩|𝜓⟩|| ≤ 2Δ for all |𝜓⟩ ∈ ℋ𝐴 ⊗ℋ𝐵.
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Proof. Suppose 𝛼𝑖 = 𝑤𝑖
𝑁 are rational numbers, with 𝑤𝑖 and 𝑁 nonnegative integers. This can be

assumed with arbitrarily small error. We re-write

𝐾 =
1

𝑁

∑︁
𝑖

𝑤𝑖∑︁
𝑗=1

𝑈𝑖 ⊗ 𝑉𝑖.

Let 𝑀 =
∑︀

𝑖𝑤𝑖. Introduce a maximally entangled state

|Φ⟩𝑎𝑏 =
1√
𝑀

∑︁
𝑖

𝑤𝑖∑︁
𝑗=1

|𝑖, 𝑗⟩𝑎|𝑖, 𝑗⟩𝑏,

where Alice’s and Bob’s auxiliary registers are denoted by 𝑎 and 𝑏 respectively. This leads to the
following representation of 𝐾:

|Φ⟩⟨Φ|𝑎𝑏 ⊗𝐾 =
𝑀

𝑁

⎛⎝|Φ⟩⟨Φ|𝑎𝑏

⎛⎝∑︁
𝑖,𝑗

|𝑖, 𝑗⟩⟨𝑖, 𝑗|𝑎 ⊗ 𝑈𝑖

⎞⎠⊗

⎛⎝∑︁
𝑖,𝑗

|𝑖, 𝑗⟩⟨𝑖, 𝑗|𝑏 ⊗ 𝑉𝑖

⎞⎠ |Φ⟩⟨Φ|𝑎𝑏

⎞⎠ .

From Theorem 54, there exists an operator 𝐿 with Schmidt rank 1
𝜖𝒪(1) , such that

‖𝐿− |Φ⟩⟨Φ|𝑎𝑏‖ ≤ 𝜖.

Letting 𝜖 = 𝑁Δ
𝑀 , we obtain the following approximation to 𝐾 ⊗ |Φ⟩⟨Φ|𝑎𝑏:

𝐾 ′ =
𝑀

𝑁

⎛⎝𝐿
⎛⎝∑︁

𝑖,𝑗

|𝑖, 𝑗⟩⟨𝑖, 𝑗|𝑎 ⊗ 𝑈𝑖

⎞⎠⊗

⎛⎝∑︁
𝑖,𝑗

|𝑖, 𝑗⟩⟨𝑖, 𝑗|𝑏 ⊗ 𝑉𝑖

⎞⎠ |Φ⟩⟨Φ|𝑎𝑏

⎞⎠
such that for all |𝜓⟩,

||𝐾 ′ − |Φ⟩⟨Φ|𝑎𝑏 ⊗𝐾|| ≤ Δ =⇒ ‖
(︀
𝐾 ′ − 1⊗ |Ω⟩⟨Ω|𝑎𝑏

)︀
|Φ⟩𝑎𝑏|𝜓⟩‖ ≤ 2Δ.

When 𝐾 ′ acts on a state |𝜓⟩𝐴|𝜓⟩𝐵|Φ⟩𝑎𝑏, the Schmidt rank is increased by at most the Schmidt rank
of 𝐿, which is (︂

𝑀

𝑁Δ

)︂𝒪(1)

=

(︃
1

Δ

∑︁
𝑖

𝑤𝑖
𝑁

)︃𝒪(1)

=

(︂∑︀
𝑖 𝛼𝑖
Δ

)︂𝒪(1)

.

By definition, this is the Schmidt rank of the EPR-assisted AGSP 𝐾 ′ (1⊗ |Φ⟩𝑎𝑏). This completes
the proof. ⊓⊔
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Chapter 4

Learning quantum interactions

Chapter summary: In this chapter, we study the problem of learning the Hamiltonian of a
quantum many-body system given samples from its Gibbs (thermal) state. The classical analog
of this problem, known as learning graphical models or Boltzmann machines, is a well-studied
question in machine learning and statistics. We present the first sample-efficient algorithm for the
quantum Hamiltonian learning problem. In particular, we prove that polynomially many samples
in the number of particles (qudits) are necessary and sufficient for learning the parameters of a
geometrically-local Hamiltonian in ℓ2-norm.

Our main contribution is in establishing the strong convexity of the log-partition function of
quantum many-body systems, which along with the maximum entropy estimation yields our sample-
efficient algorithm. Classically, the strong convexity for partition functions follows from the Markov
property of Gibbs distributions. This is, however, known to be violated in its exact form in the
quantum case. We introduce several new ideas to obtain an unconditional result that avoids relying
on the Markov property of quantum systems, at the cost of a slightly weaker bound. In particular,
we prove a lower bound on the variance of quasi-local operators with respect to the Gibbs state,
which might be of independent interest. Our work paves the way toward a more rigorous application
of machine learning techniques to quantum many-body problems. This chapter is based on:

[AAKS21] Anurag Anshu, Srinivasan Arunachalam, Tomotaka Kuwahara, and Mehdi Soleimanifar.
Sample-efficient learning of interacting quantum systems. Nature Physics, 17(8):931–935,
2021. Also in Proceedings of IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 685–691, 2020.

4.1 Introduction

The fundamental interactions in materials, given by the electromagnetic forces between electrons
and nuclei, are often too complicated to be grasped in their entirety. This has shifted the attention
to understanding the effective interactions between particles, described by local Hamiltonians, that
if accurately chalked out, can be used to describe a variety of properties of the system and novel
phases of matter. Recent advances in experimental techniques allow for the synthesis and study of
increasingly complex interacting quantum systems [BSK+17, ZPH+17, AAB+19, SBM+11]. This
prompts an important question: How can we infer the interactions between particles in such compli-
cated systems or certify that their Hamiltonians indeed match the theoretically predicted models?
A similar question arises in the context of near-term quantum computers. A major application
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of quantum computers is to simulate the dynamics or particular states of a quantum system gov-
erned by a given Hamiltonian. In particular, the task of preparing the thermal state of a target
Hamiltonian, known as quantum Gibbs sampling, is the backbone of many quantum algorithms
such as semi-definite programming solvers [BS17b, vAGGdW20, BKF22], quantum simulated an-
nealing [Mon15b, HW20], quantum machine learning [WKS16], and quantum simulations at finite
temperature [MST+20]. Since near-term quantum computers will be noisy, an important problem
in the scalable development of these devices is to verify their performance and calibrate them. For
various quantum algorithms this means devising classical algorithms that, using measurement data,
determine if the correct Hamiltonian has been implemented on the quantum device.

In this chapter, we focus on one version of this problem where we aim to learn the underlying
Hamiltonian of a quantum system given multiple identical copies of its Gibbs state at a known fixed
temperature. We refer to this task as the quantum Hamiltonian learning problem. More formally, we
consider a geometrically-local Hamiltonian 𝐻 acting on 𝑛 qudits which are arranged on the vertices
of a finite dimensional lattice. In general, we can parameterize 𝐻 by

𝐻(𝜇) =

𝑚∑︁
ℓ=1

𝜇ℓ𝐸ℓ

where 𝜇ℓ ∈ R and the operators 𝐸ℓ are Hermitian and {𝐸ℓ} forms an orthogonal basis for the space
of operators. We say the Hamiltonian 𝐻 is 𝜅-local when the number of qubits in the support of
each operator 𝐸ℓ is at most 𝜅. In geometrically-local Hamiltonians, the maximum distance between
the qubits in the support of operators 𝐸ℓ (measured with respect to the underlying lattice) is
also bounded by a constant (see Section 4.6.2 and Definition 79 for more formal definitions). For
instance in the case of qubits, operators 𝐸ℓ are tensor products of at most 𝜅 Pauli operators that
act non-trivially only on spatially-close qubits. We let the vector 𝜇 = (𝜇1, . . . , 𝜇𝑚)

⊤ be the vector
of interaction coefficients. In our setup, without loss of generality we assume the Hamiltonian is
traceless, i.e., for the identity operator 𝐸ℓ = 1, the coefficient 𝜇ℓ = 0. At a inverse-temperature 𝛽,
the qudits are in the Gibbs state defined as

𝜌𝛽(𝜇) =
𝑒−𝛽𝐻(𝜇)

tr[𝑒−𝛽𝐻(𝜇)]
.

In the quantum Hamiltonian learning problem, we are given multiple copies of 𝜌𝛽(𝜇) and can per-
form arbitrary local measurements on them. This allows us to estimate all the 𝜅-local marginals of
𝜌𝛽(𝜇) denoted by

𝑒ℓ = tr[𝜌𝛽(𝜇)𝐸ℓ] for ℓ ∈ [𝑚].

The goal is to learn the coefficients 𝜇ℓ of the Hamiltonian 𝐻 using the result of these measurements.

Learning the Hamiltonian of a quantum system has a natural classical analog, known as learning
Boltzmann machines or, more generally, graphical models which is a central problem in machine
learning and modern statistical inference. When expressed using physics terminology, Boltzmann
machines correspond to Ising models, a prototypical classical spin Hamiltonian, and the learning
problem is equivalent to inferring the corresponding Hamiltonian using samples from its Gibbs
(thermal) distribution. Due to the wide-spread application of these models [WJ08], a large body of
work has been devoted to studying them, resulting in highly efficient methods for learning Boltz-
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mann machines that operate even in the regime where simulating the equivalent Ising model is
computationally NP-hard [CL68, HS+86, Bre15, KM17, VMLC16].

Given the practical importance of quantum Hamiltonian learning and the remarkable achieve-
ments of machine learning methods for the classical version of this problem, various theoretical stud-
ies [BAL19, SK14, QR19], experimental implementations [WPS+17, SSR+14], and a great number
of heuristic algorithms [BAL19, EHF19, BGP+20, SML+11, WGFC14b, WGFC14a] for this task
have appeared. Despite these efforts, the primary challenge in the quantum Hamiltonian learning
problem has remained long open, that is, to devise learning methods that are provably efficient in
terms of the resources required for inferring the interactions with high accuracy. Most significantly,
a prerequisite for any useful Hamiltonian learning method is an efficient sample (or copy) complex-
ity. That is, the number of performed measurements, or equivalently, the number of identically
prepared samples of the system, should ideally scale efficiently with the number of particles. The
previous results, however, use a number of samples that in general can grow exponentially, lack a
rigorous performance guarantee, assume additional control of the system, or only apply to special
systems with few particles.

A fundamental obstacle to achieving efficient methods for quantum Hamiltonian learning is a
striking feature of interacting quantum systems compared to their classical counterparts. At thermal
equilibrium, the classical spin systems always satisfy what is known as the Markov property. That
is, the correlations between two distant spins are mediated by the intermediate spins located in
between them such that by conditioning on the state of these intermediate spins, the two distant
spins become independent of each other (see Section 4.3.3 for more details). A crucial implication
of the Markov property for classical many-body systems is that their Hamiltonian can be robustly
learned using local measurements. Surprisingly, quantum spin systems are known to violate the
Markov property in its exact form [LP08]. This makes it unclear whether, in principle, recovering
quantum interactions from the results of local measurements is possible and complicates efforts to
extend the machine learning techniques from classical to quantum Hamiltonians. Resolving this
question and obtaining an algorithm for inferring the local Hamiltonian given efficient number of
copies of the Gibbs state of the system is the main objective of this chapter.

4.2 Main result

Motivated by these applications, we now formally define the Hamiltonian learning problem. Our
main result is a sample-efficient algorithm for the Hamiltonian learning problem.

Theorem 68 (Sample-efficient Hamiltonian learning). Consider a geometrically-local Hamiltonian
𝐻(𝜇) =

∑︀𝑚
ℓ=1 𝜇ℓ𝐸ℓ that acts on 𝑛 qudits and consists of 𝑚 local terms such that maxℓ∈[𝑚] |𝜇ℓ| ≤ 1.

There is a Hamiltonian learning algorithm that uses

𝑁 = 𝒪
(︃
𝑒𝒪(𝛽𝑐)

𝛽𝑐𝜀2
·𝑚3 · log

(︁ 𝑚
err

)︁)︃
(4.1)

copies of the Gibbs state 𝜌𝛽(𝜇) = 𝑒−𝛽𝐻(𝜇)/tr[𝑒−𝛽𝐻(𝜇)] at a fixed inverse-temperature 𝛽, and obtains
an estimate 𝜇̂ = (𝜇̂1, . . . , 𝜇̂𝑚) of the coefficients 𝜇ℓ such that with probability at least 1− err,

||𝜇− 𝜇̂||2 ≤ 𝜀.
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Here 𝑐, 𝑐 ≥ 1 are constants depending on the geometry of the Hamiltonian and ||𝜇− 𝜇̂||2 =(︀∑︀𝑚
ℓ=1 |𝜇ℓ − 𝜇̂ℓ|2

)︀ 1
2 is the ℓ2-norm of the difference of 𝜇 and 𝜇̂.

For goemtrically-local Hamiltonians the number of interaction terms 𝑚 scales as 𝑂(𝑛). Hence,
our result in Theorem 68 implies a sample complexity polynomial in the number of qudits. The
number of samples in (4.1) increases as 𝛽 → ∞ or 𝛽 → 0. As the temperature increases (𝛽 → 0),
the Gibbs state approaches the maximally mixed state independent of the choice of parameters 𝜇.
At low temperatures (𝛽 → ∞), the Gibbs state is in the vicinity of the ground space, which for
instance, could be a product state |0⟩⊗𝑛 for the various choices of 𝜇. In either cases, more sample
are required to distinguish the parameters 𝜇.

To complement our upper bound, we also obtain a Ω(
√
𝑚) lower bound for the

Hamiltonian learning problem with ℓ2 norm using a simple reduction to the state discrimination
problem. The proof appears in Section 4.7. Hence, our upper bound in Theorem 68 is tight up to
polynomial factors.

Theorem 69. The number of copies 𝑁 of the Gibbs state needed to solve the quantum Hamiltonian
learning problem and output a 𝜇̂ satisfying ‖𝜇̂−𝜇‖2 ≤ 𝜀 with probability 1− err is lower bounded by

𝑁 ≥ Ω
(︁√𝑚+ log(1− err)

𝛽𝜀

)︁
.

4.3 Proof overview

In order to prove our main result, we introduce several new ideas. In this section, we provide a
sketch of the main ingredients in our proof.

4.3.1 Maximum entropy estimation and sufficient statistics

In statistical learning theory, a conventional method for obtaining the parameters of a probabil-
ity distribution from data relies on the concepts of sufficient statistics and the maximum entropy
estimation. Suppose 𝑝(𝑥;𝜇) is a family of probability distributions parameterized by 𝜇 that we
want to learn. This family could for instance be various normal distributions with different mean
or variance. Let 𝑋1, . . . , 𝑋𝑚 ∼ 𝑝(𝑥;𝜇) be 𝑚 samples from a distribution in this family. A sufficient
statistic is a function 𝑇 of these samples 𝑇 (𝑋1, . . . , 𝑋𝑚) such that conditioned on that, the original
date set 𝑋1, . . . , 𝑋𝑚 does not depend on the parameter 𝜇. For example, the sample mean and
variance are well known sufficient statistic functions.

After obtaining the sufficient statistic of a given data set given classical samples, there is a
natural algorithm for estimating the parameter 𝜇: among all the distributions that match the
observed statistic 𝑇 (𝑋) find the one that maximizes the Shannon entropy. Intuitively, this provides
us with the least biased estimate given the current samples [Jay57a, Jay82]. This algorithm, which
is closely related to the maximum likelihood estimation, is commonly used for analyzing the sample
complexity of classical statistical problems.

Our first observation when addressing the Hamiltonian learning problem is that this method
can be naturally extended to the quantum problem as previously considered in [Jay57b, SK14].
Indeed, the maximum entropy principle has already appeared in other quantum algorithms
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such as [BKL+19]. More formally, in the following proposition, whose proof is given in Sec-
tion 4.8.1, we first show that the marginals tr[𝐸ℓ𝜌] for ℓ ∈ [𝑚] form a sufficient statistic for the
Hamiltonian learning problem.

Proposition 70 (Matching local marginals implies global equivalence). Consider the following two
Gibbs states

𝜌𝛽(𝜇) =
𝑒−𝛽

∑︀
ℓ 𝜇ℓ𝐸ℓ

tr[𝑒−𝛽
∑︀

ℓ 𝜇ℓ𝐸ℓ ]
, 𝜌𝛽(𝜆) =

𝑒−𝛽
∑︀

ℓ 𝜆ℓ𝐸ℓ

tr[𝑒−𝛽
∑︀

ℓ 𝜆ℓ𝐸ℓ ]
(4.2)

such that tr[𝜌𝛽(𝜆)𝐸ℓ] = tr[𝜌𝛽(𝜇)𝐸ℓ] for all ℓ ∈ [𝑚], i.e. all the 𝜅-local marginals of 𝜌𝛽(𝜆) match
that of 𝜌𝛽(𝜇). Then, we have 𝜌𝛽(𝜆) = 𝜌𝛽(𝜇), which in turns implies 𝜆ℓ = 𝜇ℓ for ℓ ∈ [𝑚].

Similar to the classical case discussed above, one implication of Proposition 70 is a method for
learning the Hamiltonian 𝐻: first measure all the 𝜅-local marginals of the Gibbs state 𝑒ℓ, then
among all the states of the form (4.2), find the one that matches those marginals. Finding such
a state can be naturally formulated in terms of an optimization problem known as the maximum
entropy problem:

max
𝜎

𝑆(𝜎)

s.t. tr[𝜎𝐸ℓ] = 𝑒ℓ, ∀ℓ ∈ [𝑚]

𝜎 > 0, tr[𝜎] = 1.

(4.3)

where 𝑆(𝜎) = −tr[𝜎 log 𝜎] is the von Neumann entropy of the state 𝜎. The optimal solution of
this program is a quantum state with a familiar structure [Jay57b]. Namely, it is a Gibbs state
𝜌(𝜆) for some set of coefficients 𝜆 = (𝜆1, . . . , 𝜆𝑚). The coefficients 𝜆 are the Lagrange multipliers
corresponding to the dual of this program. Indeed, we can write the dual program of Eq. (4.3) as
follows:

𝜇 = argmin
𝜆=(𝜆1,...,𝜆𝑚)

log𝑍𝛽(𝜆) + 𝛽 ·
𝑚∑︁
ℓ=1

𝜆ℓ𝑒ℓ, (4.4)

where 𝑍𝛽(𝜆) = tr
(︀
𝑒−𝛽·

∑︀
ℓ 𝜆ℓ𝐸ℓ

)︀
is the partition function at inverse-temperature 𝛽. In principle,

according to the result of Proposition 70, we could solve the Hamiltonian learning problem by
finding the optimal solution of the dual program in (4.4). Of course, the issue with this approach
is that since we have access to limited number of samples of the original Gibbs state 𝜌𝛽(𝜇), instead
of the exact marginals 𝑒ℓ, we can only approximately estimate the 𝑒ℓs. We denote these estimates
by 𝑒ℓ. This means instead of solving the dual program (4.4), we solve its empirical version

𝜇̂ = argmin
𝜆=(𝜆1,...,𝜆𝑚)

log𝑍𝛽(𝜆) + 𝛽 ·
𝑚∑︁
ℓ=1

𝜆ℓ𝑒ℓ. (4.5)

The main technical problem that we address in the upcoming sections is analyzing the robustness
of the programs (4.3) and (4.4) to the statistical error in the marginals as appears in (4.5). This
is an instance of a stochastic optimization which is a well-studied problem in optimization. In the
next section, we review the ingredients from convex optimization that we need in our analysis.
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4.3.2 Strong convexity

One approach to incorporate the effect of the statistical errors in the marginals 𝑒ℓ into the es-
timates for 𝜇ℓ is to use Proposition 70. It is not hard to extend this proposition to show that
if a Gibbs states 𝜌𝛽(𝜆) approximately matches the marginals of 𝜌𝛽(𝜇) up to some error 𝜀, then
||𝜌𝛽(𝜇)− 𝜌𝛽(𝜆)||21 ≤ 𝒪(𝑚𝜀) (see Remark 91 for more details). This bound, however, is not strong
enough for our purposes. This is because if we try to turn this bound to a one on the coefficients
𝜇ℓ of the Hamiltonian, we need to bound || log 𝜌𝛽(𝜇)− log 𝜌𝛽(𝜆)||. Unfortunately, the function
log(𝑥) does not have a bounded gradient (i.e., it is not Lipschitz) over its domain and in general
|| log 𝜌𝛽(𝜇)− log 𝜌𝛽(𝜆)|| can be exponentially worse than ||𝜌𝛽(𝜇)− 𝜌𝛽(𝜆)||1. In order to overcome
the non-Lipschitz nature of the logarithmic function and bound || log 𝜌𝛽(𝜇)− log 𝜌𝛽(𝜆)||, we prove a
property of the dual objective function (4.4) known as the strong convexity, which we define now.

Definition 71. Consider a convex function 𝑓 : R𝑚 ↦→ R with gradient ∇𝑓(𝑥) and Hessian ∇2𝑓(𝑥)
at a point 𝑥.1 This function 𝑓 is said to be 𝛼-strongly convex in its domain if it is differentiable and
for all 𝑥, 𝑦,

𝑓(𝑦) ≥ 𝑓(𝑥) +∇𝑓(𝑥)⊤(𝑦 − 𝑥) +
1

2
𝛼||𝑦 − 𝑥||22,

or equivalently if the minimum eigenvalue of the Hessian 𝜎min(∇2𝑓(𝑥)) satisfies

𝜎min(∇2𝑓(𝑥)) ≥ 𝛼. (4.6)

In other words, for any vector 𝑣 ∈ R𝑚, it holds that
∑︀

𝑖,𝑗 𝑣𝑖𝑣𝑗
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓(𝑥) ≥ 𝛼||𝑣||22.

Roughly speaking, strong convexity puts a limit on how slow a convex function 𝑓(𝑥) changes.2

This is particularly useful because given two points 𝑥, 𝑦 and an upper bound on |𝑓(𝑦)− 𝑓(𝑥)| and
∇𝑓(𝑥)⊤(𝑦−𝑥), it allows us to infer an upper bound on ||𝑦 − 𝑥||2. For our application, we think of 𝑓
as being log𝑍𝛽(·). Then the difference |𝑓(𝑦)− 𝑓(𝑥)| is the difference between the optimal solution
of the original program in Eq. (4.4) and that of its empirical version in Eq. (4.5) which includes the
statistical error. We apply this framework to our optimization (4.5) in two steps:

1) Proving the strong convexity of the objective function: This is equivalent to showing that the
log-partition function (aka the free energy) is strongly convex, i.e., 𝜎min(∇2 log𝑍𝛽(𝜆)) ≥ 𝛼 for
some positive coefficient 𝛼. In particular, this means that the optimization (4.5) is a convex
program. This result is the main technical contribution of this Chapter and is stated in the
following theorem whose proof is overviewed in Section 4.3.4 and given in detail in Section 4.9.

Theorem 72 (Informal: strong convexity of log-partition function). Let 𝐻 =
∑︀𝑚

ℓ=1 𝜇ℓ𝐸ℓ be a 𝜅-
local Hamiltonian over a finite dimensional lattice with ||𝜇|| ≤ 1. For a given inverse-temperature
𝛽, there are constants 𝑐, 𝑐′ > 3 depending on the geometric properties of the lattice such that

𝜎min

(︀
∇2 log𝑍𝛽(𝜇)

)︀
≥ 𝑒−𝒪(𝛽𝑐)𝛽

𝑐′

𝑚
, (4.7)

1Recall that the entries of the Hessian matrix ∇2𝑓(𝑥) are given by 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓(𝑥)

2This should not be confused with a related property called the smoothness which limits how fast the func-
tion grows.
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i.e., for every vector 𝑣 ∈ R𝑚 we have 𝑣𝑇 · ∇2 log𝑍𝛽(𝜇) · 𝑣 ≥ 𝑒−𝒪(𝛽𝑐) 𝛽𝑐′

𝑚 · ||𝑣||22.

2) Bounding the error in estimating 𝜇 in terms of the error in estimating the marginals 𝑒ℓ: In this
step we show that as long as the statistical error of the marginals is small, using the strong
convexity property from step (1), we can still prove an upper bound on the difference between the
solutions of the convex programs (4.4), (4.5). We discuss this in more details later in Section 4.8.2.
The result can be stated as follows:

Theorem 73 (Error bound from strong convexity). Let 𝛿, 𝛼 > 0. Suppose the marginals
𝑒ℓ are determined up to error err, i.e., |𝑒ℓ − 𝑒ℓ| ≤ 𝛿 for all ℓ ∈ [𝑚]. Additionally assume
𝜎min(∇2 log𝑍𝛽(𝜆)) ≥ 𝛼 and ||𝜆|| ≤ 1. Then the optimal solution to the program (4.5) satisfies

||𝜇− 𝜇̂||2 ≤
2𝛽

√
𝑚𝛿

𝛼
.

Combining Theorem 72 and Theorem 73, we obtain our claimed sample complexity result. We now
proceed to sketch the proof of Theorem 72.

4.3.3 Strong convexity of classical log-partition functions

In order to better understand the motivation behind our quantum proof, it is insightful to start
with the classical Hamiltonian learning problem. This helps us better describe various subtleties
(briefly mentioned in the main Article) and what goes wrong when trying to adapt the classical
techniques to the quantum case. We continue using the quantum notation here, but the reader can
replace the Hamiltonian 𝐻, for instance, with the classical Ising model 𝐻 =

∑︀
𝑖∼𝑗 𝐽𝑖𝑗𝑥𝑖𝑥𝑗 (where

𝑥𝑖 ∈ {−1, 1} and 𝐽𝑖𝑗 ∈ R).
The entries of the Hessian ∇2 log𝑍𝛽(𝜇) for classical Hamiltonians are given by

𝜕2

𝜕𝜇𝑖𝜕𝜇𝑗

[︁
log𝑍𝛽(𝜇)

]︁
= Cov[𝐸𝑖, 𝐸𝑗 ] (4.8)

where Cov is the covariance function which is defined as Cov[𝐸𝑖, 𝐸𝑗 ] = ⟨𝐸𝑖𝐸𝑗⟩ − ⟨𝐸𝑖⟩⟨𝐸𝑗⟩ with the
expectation taken with respect to the Gibbs distribution (i.e., ⟨𝐸⟩ = tr[𝐸 · 𝜌𝛽(𝜇)]). To prove the
strong convexity of the log-partition function at a constant 𝛽 (defined in Definition 92), using (4.8)
it suffices to show that for every vector 𝑣, we have

∑︁
𝑖,𝑗

𝑣𝑖𝑣𝑗
𝜕2

𝜕𝜇𝑖𝜕𝜇𝑗
log𝑍𝛽(𝜇) = Var

[︃
𝑚∑︁
ℓ=1

𝑣ℓ𝐸ℓ

]︃
≥ Θ(1) ·

𝑚∑︁
ℓ=1

𝑣2ℓ . (4.9)

Although the operator
∑︀

ℓ 𝑣ℓ𝐸ℓ is a local Hamiltonian, note the mismatch between this operator
and the original Hamiltonian in the Gibbs state

∑︀𝑚
ℓ=1 𝜇ℓ𝐸ℓ. Note that the inequality (4.9) is

stronger than our main technical contribution in the quantum setting (i.e., for the case of quantum
partition functions, we proved the analogue of inequality (4.9) when Θ(1) replaced by Θ(1/𝑚)).
Before proving Eq. (4.9), we remark that an upper bound of Var[

∑︀𝑚
ℓ=1 𝑣ℓ𝐸ℓ] ≤ 𝒪(1)||𝑣||22 is known

in literature, under various conditions like the decay of correlations both in classical and quantum
settings [Ara69, Gro79, PY95, Uel04, KGK+14, FU15]. This upper bound intuitively makes sense
because the variance of the thermal state of a Hamiltonian and other local observables are expected
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to be extensive, i.e., they scale with the number of particles (spins) or norm of the Hamiltonian,
which is replaced by ||𝑣||22 in our setup. However, in the classical Hamiltonian learning problem,
we are interested in obtaining a lower bound on the variance. To this end, a crucial property of
the (classical) Gibbs distributions that allows us to prove the inequality (4.9) is the conditional
independence or the Markov property of classical systems.

Definition 74 (Markov property). Suppose the interaction graph is decomposed into three disjoint
regions 𝐴, 𝐵, and 𝐶 such that region 𝐵 “shields" 𝐴 from 𝐶, i.e., the vertices in region 𝐴 are not
connected to those in 𝐶. Then, conditioned on the sites in region 𝐵, the distribution of sites in 𝐴 is
independent of those in 𝐶. This is often conveniently expressed in terms of the conditional mutual
information by 𝐼(𝐴 : 𝐶|𝐵) = 0.

It is known by the virtue of the Hammersley-Clifford theorem [HC71] that the family of distri-
butions with the Markov property coincides with the Gibbs distributions. Using this property, we
can lower bound Var [

∑︀𝑚
ℓ=1 𝑣ℓ𝐸ℓ] in terms of variance of local terms 𝐸ℓ by conditioning on a subset

of sites. To this end, we consider a partition of the interaction graph into two sets 𝐴 and 𝐵. The
set 𝐵 is chosen, suggestively, such that the vertices in 𝐴 are not connected (via any edges) to each
other. We denote the spin configuration of sites in 𝐵 collectively by 𝑠𝐵. Then using the concavity
of the variance and the Markov property, we have

Var

[︃
𝑚∑︁
ℓ=1

𝑣ℓ𝐸ℓ

]︃
(1)

≥ E𝑠𝐵

[︃
Var

[︃
𝑚∑︁
ℓ=1

𝑣ℓ𝐸ℓ

⃒⃒⃒
𝑠𝐵

]︃]︃

(2)
=
∑︁
𝑥∈𝐴

E𝑠𝐵

⎡⎣Var
⎡⎣ ∑︁
ℓ:𝐸ℓ acts on 𝑥

𝑣ℓ𝐸ℓ

⃒⃒⃒
𝑠𝐵

⎤⎦⎤⎦
(3)

≥ Θ(1) ·
𝑚∑︁
ℓ=1

𝑣2ℓ , (4.10)

where inequality (1) follows from the law of total variance, equality (2) can be justified as follows:
by construction, the local terms 𝐸ℓ either completely lie inside region 𝐵 or intersect with only one
of the sites in region 𝐴. In the former, the local conditional variance Var [𝐸ℓ |𝑠𝐵 ] vanishes, whereas
in the latter, the interaction terms 𝐸ℓ that act on different sites 𝑥 ∈ 𝐴 become uncorrelated and the
global variance decomposes into a sum of local variance. Finally, inequality (3) is derived by noticing
that at any constant inverse-temperature 𝛽, the local variance is lower bounded by a constant that
scales as 𝑒−Θ(𝛽). By carefully choosing the partitions 𝐴 and 𝐵 such that |𝐴| = 𝒪(𝑛), we can
make sure that the variance in inequality (2) is a constant fraction of the

∑︀𝑚
ℓ=1 𝑣

2
ℓ as in (4.10) (see

[Mon15a, VMLC16] for details).

4.3.4 Strong convexity of quantum log-partition functions

If we try to directly quantize the proof strategy of the classical case in the previous section, we
immediately face several issues. In what follows we describe the challenges in obtaining a quantum
proof along with our techniques to overcome them which allow us to establish Theorem 98. The
content of our proof of the quantum case is divided into four steps whose overview is given below.
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Overview of step 1: Relating the Hessian to a variance

The first problem is that we cannot simply express the entries of the Hessian matrix ∇2 log𝑍𝛽(𝜇) in
terms of Cov[𝐸𝑖, 𝐸𝑗 ] as in (4.8). This expression in (4.8) only holds for Hamiltonians with commuting
terms, i.e., [𝐸𝑖, 𝐸𝑗 ] = 0 for all 𝑖, 𝑗 ∈ [𝑚]. The Hessian for the non-commuting Hamiltonians takes
a complicated form (see Lemma 99 for the full expression) that makes its analysis difficult. Our
first contribution, covered in Section 4.9.1, is to recover a similar result to (4.9) in the quantum
case by showing that, for every 𝑣, we can still lower bound 𝑣⊤ · ∇2 log𝑍𝛽(𝜇) · 𝑣 by the variance of a
suitably defined quasi-local operator. We later define what we mean by “quasi-local” more formally
(see Definition 80), but for now one can assume such an operator is, up to some small error, sum of
local terms.

Lemma 75 (A lower bound on 𝑣⊤ · ∇2 log𝑍𝛽 · 𝑣). For any vector 𝑣 ∈ R𝑚, define a quasi-local
operator ̃︁𝑊 =

∑︀𝑚
ℓ=1 𝑣ℓ

̃︀𝐸ℓ, where the operators 𝐸̃ℓ are defined by

̃︀𝐸ℓ = ∫︁ ∞

−∞
𝑓𝛽(𝑡) 𝑒

−𝑖𝐻𝑡 𝐸ℓ 𝑒
𝑖𝐻𝑡𝑑𝑡. (4.11)

Here 𝑓𝛽(𝑡) = 2
𝛽𝜋 log

𝑒𝜋|𝑡|/𝛽+1
𝑒𝜋|𝑡|/𝛽−1

is defined such that 𝑓𝛽(𝑡) scales as 1
𝛽 𝑒

−𝜋|𝑡|/𝛽 for large 𝑡 and 𝑓𝛽(𝑡) ∝
log(1/𝑡) for 𝑡→ +0. Then

∑︁
𝑖,𝑗

𝑣𝑖𝑣𝑗
𝜕2

𝜕𝜇𝑖𝜕𝜇𝑗
log𝑍𝛽(𝜇) ≥ 𝛽2Var[̃︁𝑊 ]. (4.12)

This implies the bound 𝜎min(log𝑍𝛽(𝜇)) ≥ 𝛽2Var[̃︁𝑊 ] on the the minimum eigenvalue of log𝑍𝛽(𝜇).

Overview of step 2: From global to local variance

As a result of Lemma 75, we see that from here onwards, it suffices to lower bound the variance
of the quasi-local operator ̃︁𝑊 =

∑︀𝑚
ℓ=1 𝑣ℓ𝐸̃ℓ. One may expect the same strategy based on the

Markov property in (4.10) yields the desired lower bound. Unfortunately, it is known that a natural
extension of this property to the quantum case, expressed in terms of the quantum conditional mutual
information (qCMI), does not hold. In particular, example Hamiltonians are constructed in [LP08]
such that for a tri-partition 𝐴,𝐵,𝐶 as in Definition 74, their Gibbs states have non-zero qCMI, i.e.,
𝐼(𝐴 : 𝐶|𝐵) > 0. Nevertheless, it is conjectured that an approximate version of this property can be
recovered i.e., 𝐼(𝐴 : 𝐶|𝐵) ≤ 𝑒−Ω(dist(𝐴,𝐶)). In other words, the approximate property claims that
qCMI is exponentially small in the width of the shielding region 𝐵. Thus far, this conjecture has
been proved only at sufficiently high temperatures [KKBa20] and on 1D chains [KBa19b]. Even
assuming this conjecture is true, we currently do not know how to recover the argument in (4.10).
Given this issue we ask,

Can we obtain an unconditional lower bound on the variance of a quasi-local observable
at any inverse-temperature 𝛽 without assuming quantum conditional independence?

Our next contribution is to give an affirmative answer to this question. To achieve this, we modify
the classical strategy as explained below.

One ingredient in the classical proof is to lower bound the global variance Var[
∑︀

ℓ 𝑣ℓ𝐸ℓ] by sum
of local conditional variances Var[𝐸ℓ|𝑠𝐵] as in (4.10). We prove a similar but slightly weaker result
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in the quantum regime. To simplify our discussion, let us ignore the fact that ̃︁𝑊 =
∑︀

ℓ 𝑣ℓ𝐸̃ℓ is a
quasi-local operator and view it as (strictly) local. Consider a special case in which 𝑣 is such that
the operator ̃︁𝑊 is supported on a small number of sites. For instance, it could be that 𝑣1 > 0 while
𝑣2, . . . , 𝑣𝑚 = 0. Then the variance Var[̃︁𝑊 ] can be easily related to the local variance Var[𝐸1] and
since 𝐸2

1 = 1, |tr[𝐸1𝜌𝛽]| < 1, we get

Var[̃︁𝑊 ] = 𝑣21 ·
(︀
tr[𝐸2

1𝜌𝛽]− tr[𝐸1𝜌𝛽]
2
)︀
≥ Θ(1) · 𝑣21

In Section 4.9.3, we show that even in the general case, where 𝑣1, . . . , 𝑣𝑚 are all non-zero, we can
still relate Var[̃︁𝑊 ] to the variance of a local operator supported on a constant region. Compared to
the classical case in (4.10), where the lower bound on Var[𝑊 ] includes a sum of 𝒪(𝑚) local terms,
our reduction to a single local variance costs “an extra factor of 𝑚” in our strong convexity bound.

Our reduction to local variance is based on the following observation. By applying Haar-random
local unitaries on a site 𝑖, we can remove all the terms of the operator ̃︁𝑊 except those that act
on an arbitrary qudit at the site (see also Section 4.6.5). We denote the remainder terms by ̃︁𝑊(𝑖)

defined via ̃︁𝑊(𝑖) = ̃︁𝑊 − E𝑈𝑖∼Haar[𝑈
†
𝑖
̃︁𝑊𝑈𝑖].

By using the triangle inequality this relation implies

Var[̃︁𝑊 ] ≥ 1

2
tr[̃︁𝑊 2

(𝑖)𝜌𝛽]− E𝑈𝑖

[︁
tr[̃︁𝑊 2 · 𝑈𝑖𝜌𝛽𝑈 †

𝑖 ]
]︁
. (4.13)

Hence, if we could carefully analyze the effect of the term E𝑈𝑖 [tr[
̃︁𝑊 2 ·𝑈𝑖𝜌𝛽𝑈 †

𝑖 ]], this will allow us to
relate the global variance Var[̃︁𝑊 ] to the local variance tr[̃︁𝑊 2

(𝑖)𝜌𝛽]. We discuss this next.

Overview of step 3: Bounding the effect of local unitaries

While applying the above reduction helps us to go to an easier local problem, we need to deal with
the changes in the spectrum of the Gibbs state due to applying the random local unitaries 𝑈𝑖. Could
it be that the unitaries 𝑈𝑖 severely change the spectral relation between ̃︁𝑊 and 𝜌𝛽? We show that
this is not the case, relying on the facts: (1) local unitaries cannot mix up subspaces of ̃︁𝑊 and 𝐻
that are energetically far away and (2) the weight given by the Gibbs state 𝜌𝛽 to nearby subspaces
of 𝐻 are very similar at small 𝛽. Thus, (1) allows us to focus on the subspaces that are close in
energy and (2) shows that similar weights of these subspaces do not change the variance by much.
In summary, in Section 4.9.4 we prove:

Proposition 76 (Invariance under local unitaries, informal). Let 𝑈𝑋 be a local unitary operator
acting on region 𝑋 that has a constant size. There exists a constant 𝑐 ≤ 1 such that

tr
[︁̃︁𝑊 2 · 𝑈𝑋𝜌𝛽𝑈 †

𝑋

]︁
≲
(︁
Var[̃︁𝑊 ]

)︁𝑐
. (4.14)

When combined with (4.13), the inequality (4.14) implies the following loosely stated local lower
bound on the global variance:

Var[̃︁𝑊 ] ≳
(︁
tr
[︁̃︁𝑊 2

(𝑖)𝜌𝛽

]︁)︁ 1
𝑐
.
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Overview of step 4: Reduction to infinite temperature variance

With this reduction, it remains to find a constant lower bound on tr[̃︁𝑊 2
(𝑖)𝜌𝛽]. This can be done,

again, by applying a local unitary 𝑈 . Roughly speaking, we use this unitary to perform a “change of
basis” that relates the local variance at finite temperature to its infinite-temperature version. The
spectrum of 𝜌𝛽 majorizes the maximally mixed state 𝜂. Hence, by applying a local unitary, we can
rearrange the eigenvalues of ̃︁𝑊 2

(𝑖) in the same order as that of 𝜌𝛽 such that when applied to both 𝜌𝛽
and 𝜂, we have tr[̃︁𝑊 2

(𝑖)𝑈𝜌𝛽𝑈
†] ≥ tr[̃︁𝑊 2

(𝑖)𝜂]. Formally, in Section 4.9.5, we show that:

Proposition 77 (Lower bound on the local variance, informal). There exists a unitary 𝑈 supported
on 𝒪(1) sites such that

tr
[︁̃︁𝑊 2

(𝑖)𝑈𝜌𝛽𝑈
†
]︁
≥ tr

[︁̃︁𝑊 2
(𝑖)𝜂
]︁
,

where 𝜂 is the maximally mixed state or the infinite temperature Gibbs state.

In summary, starting from (4.13) and following Proposition 76 and Proposition 77, the lower
bound on the global variance takes the following local form:

tr
[︁̃︁𝑊 2𝜌𝛽

]︁
≥
(︁
tr
[︁̃︁𝑊 2

(𝑖)𝜂
]︁)︁Θ(1)

.

Lower bounding the quantity tr
[︁̃︁𝑊 2

(𝑖)𝜂
]︁

by a constant is now an easier task, which we explain
in more detail later in Lemma 111 and Theorem 102.

4.4 Further discussions

4.4.1 Connection to previous works

There have been a number of proposals for the Hamiltonian learning problem in the past. In
[BAL19, EHF19, QR19] learning the Hamiltonian from local measurements is considered. Their
approach is based on setting up a linear system of equations whose constraints (i.e., the matrix
of coefficients) are determined from the measurement outcomes. The solution of these equations
is the parameter 𝜇𝑘 of the Hamiltonian. The sample complexity in this approach depends inverse
polynomially on the “spectral gap” of the matrix of coefficients which thus far has not been rigor-
ously bounded. Another line of work considers learning the Hamiltonian using a trusted quantum
simulator [WGFC14b, WGFC14a, VMN+19] which is analyzed using a combination of numerical
evidence and heuristic arguments. Amin et al. [AAR+18] quantized classical Boltzmann machines
and proposed a method to train and learn quantum Boltzmann machines using gradient descent.

As mentioned earlier, there has been a fruitful series of works on the classical analog of the
Hamiltonian learning problem (see e.g. [Bre15, KM17, VMLC16]). In this chapter, we assume it
is a priori known that the interaction graph of the Hamiltonian is geometrically local. We then
estimate the parameters in ℓ2-norm using poly(𝑛) samples which is polynomially tight even for
classical Hamiltonians. If we instead consider estimation in ℓ∞-norm, the classical algorithms can
achieve a stronger result. That is, given 𝒪(log 𝑛) samples, they succeed in efficiently learning the
structure of the underlying graph and its parameters in ℓ∞-norm. If we apply our current analysis
to this setup, we cannot improve our poly(𝑛) sample complexity to 𝒪(log 𝑛). This is in part because
the classical results devise a more efficient convex program that learns the parameters node-wise
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(this relies on the commutativity of the Hamiltonian terms), and partly because their required
strong convexity assumptions is based on the Markov property, none of which are known to be
quantizable.

4.4.2 Open questions

In Section 4.3.1 we explained our approach to analyzing the Hamiltonian learning problem based
on reducing data to its sufficient statistics and using maximum entropy estimation. An issue with
this approach is the blowup in the computationally complexity. It is shown in [Mon15a] that this
approach basically requires approximating the partition function which is NP-hard. Ideally, one
would like to have an algorithm for the Hamiltonian learning problem that requires small number
of samples, but also has an efficient running time. Satisfying both these constraints for all inverse-
temperatures 𝛽 even in the classical learning problems is quite challenge. It was only recently that
more efficient algorithms are devised for learning graphical models [KM17, VMLC16]. Here, we
focus on the less demanding but still non-trivial question of bounding the sample complexity and
leave obtaining an efficient running time for future work. Below we mention some of the open
problems in this direction.

Our lower bound on the variance in Theorem 72 is obtained for any constant inverse-temperature
𝛽. It is an interesting open question to improve this lower bound on the variance bound (4.7), ideally
to a constant independent of system size, assuming physically-motivated conditions such as the decay
of correlations or the decay of conditional mutual information. Another approach might be to derive
such a bound at high temperatures where powerful tools such as cluster expansions are available
[KKBa20] (see [HKT21] for progress on Hamiltonian learning in the high-temperature regime). We
also expect our bounds can be improved for commuting Hamiltonians. Indeed, using structural
results such as [BV03, AE11], one should be able to follow the same strategy as in Section 4.3.3 to
find a constant lower bound on the variance of commuting Hamiltonians.

There are recent results on efficiently computing the partition function of quantum many-body
systems under various assumptions [BG17, HMS20, KKBa20]. We expect by combining these results
with our maximum entropy estimation algorithm in Section 4.3.1, one can obtain efficient classical
algorithms for the Hamiltonian learning problem. Another approach might be to use calibrated
quantum computers (or Gibbs samplers) as in [BK16, BKL+19] to solve the maximum entropy
optimization using multiplicative weight update method and learn the parameters of another quan-
tum device.

Finally, an important future direction is to devise more refined objective functions for the
Hamiltonian learning problem that matches the performance of the learning algorithms for the
classical problem as discussed in Section 4.4.1. Given the non-commutative nature of quantum
Hamiltonians, this seems to require substantially new ideas and advances in characterizing the
information theoretic properties of the quantum Gibbs states.

4.5 A guide to the remainder of this chapter

In the rest of this chapter, we provide the detailed proofs and analysis of the results presented so
far. To aid the readers, we first begin with giving an overview of the subject of each future section.

• Preliminaries (Section 4.6): We gather the notations, definitions, facts, and well-known
technical tools that are frequently used in the subsequent sections. This includes
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– Quantum belief propagation (Section 4.6.3)

– Change in the spectrum after applying local operators (Section 4.6.4)

– Local reduction of global operators (Section 4.6.5)

• A lower bound on the sample complexity (Section 4.7): The proof of the
√
𝑚 lower

bound on the sample complexity of learning quantum Hamiltonians is given.

• Efficient sample complexity assuming strong convexity (Section 4.8): We show how
assuming the strong convexity of the log-partition function of quantum systems (whose proof
is given in Section 4.9) implies an efficient sample complexity for the quantum Hamiltonian
learning. This is done in two parts:

– Sufficient statistics (Section 4.8.1)

– Stochastic convex optimization (Section 4.8.2)

• Proof of strong convexity of log-partition function (Section 4.9): Our main technical
contribution is presented in depth here. The proof the strong convexity is divided into four
steps. We have already seen a brief overview of these steps in Section 4.3.4, where an intuitive
and broad perspective of them is provided. A diagram in Figure 4-1 depicts the theorems and
lemmas used in each of these four steps and the connection between them.

– Step 1: Relating the Hessian to a variance (Section 4.9.1)

– Step 2: From global to local variance (Section 4.9.3)

– Step 3: Bounding the effect of local unitaries (Section 4.9.4)

– Step 4: Reduction to infinite temperature variance (Section 4.9.5)

– Final step: Putting things together (Section 4.9.6)

4.6 Preliminaries

4.6.1 Some mathematical facts

Here we summarize some of the basic mathematical facts used in the proof. Let 𝐴,𝐵 be arbitrary
operator. The operator norm of 𝐴 which is its largest singular value is denoted by ‖𝐴‖. The
minimum singular value of 𝐴 (or equivalently the minimum eigenvalue when 𝐴 is Hermitian) is
denoted by 𝜎min(𝐴). We also often use the Frobenius norm ‖𝐴‖𝐹 :=

√︀
tr[𝐴†𝐴] and more generally

the Hilbert-Schmidt inner product between 𝐴,𝐵 defined by tr[𝐴†𝐵]. Additionally using Hölder’s
inequality we have,

‖𝐴𝐵‖𝐹 =
√︁

tr(𝐵†𝐴𝐴†𝐵) ≤
√︁
‖𝐵‖2tr(𝐴𝐴†) = ‖𝐵‖ · ‖𝐴‖𝐹 . (4.15)

We define the von Neumann entropy of a quantum state 𝜌 by 𝑆(𝜌) = −tr[𝜌 log 𝜌] and the relative
entropy between two states 𝜌1 and 𝜌2 by 𝑆(𝜌1‖𝜌2) = −tr[𝜌1 log 𝜌2]− 𝑆(𝜌1).

The gradient of a real function 𝑓 : R𝑚 ↦→ R is denoted by ∇𝑓(𝑥) and its Hessian (second
derivative) matrix by ∇2𝑓(𝑥). The entries of the Hessian matrix are given by 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓(𝑥). The

minimum eigenvalue of the Hessian of 𝑓(𝑥) is shown by 𝜎min(∇2𝑓(𝑥)).
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We write 𝐴 ⪰ 0 to represent a positive semi-definite (PSD) operator 𝐴, one such example of a
PSD operator is the Hessian matrix ∇2𝑓(𝑥) of a convex function 𝑓(𝑥).

We will use the standard notations 𝒪(·),Θ(·), and Ω(·) to specify the scaling of various param-
eters. In particular, Θ(1) will denote a constant.

For convenience, we will also gather a collection of infinite sums over exponentials. For 𝑡 > 0, let

Γ(𝑡) :=

∫︁ ∞

0
𝑥𝑡−1𝑒−𝑥𝑑𝑥 =

1

𝑡

∫︁ ∞

0
𝑒−𝑥𝑑

(︀
𝑥𝑡
)︀
=

1

𝑡

∫︁ ∞

0
𝑒−𝑦

1
𝑡 𝑑𝑦

be the gamma function. It holds that Γ(𝑡) ≤ 𝑡𝑡. This can be used to simplify several summations
that we encounter later. Finally, we collect a few useful summations that we use in our proofs in
the following fact.

Fact 78. Let 𝑎, 𝑐 > 0, 1 ≥ 𝑝 > 0 be reals and 𝑏 be a positive integer. Then

1)
∑︀∞

𝑗=0 𝑒
−𝑐𝑗 ≤ 𝑒𝑐

𝑐 .

2)
∑︀∞

𝑗=0 𝑗
𝑏𝑒−𝑐𝑗

𝑝 ≤ 2
𝑝 ·
(︁
𝑏+1
𝑐𝑝

)︁ 𝑏+1
𝑝 .

3)
∑︀∞

𝑗=0 𝑒
−𝑐(𝑎+𝑗)𝑝 ≤ 𝑒−

𝑐
2
𝑎𝑝
(︂
1 + 1

𝑝

(︁
2
𝑐𝑝

)︁ 1
𝑝

)︂
.

Proof. The first summation follows from

∞∑︁
𝑗=0

𝑒−𝑐𝑗 =
1

1− 𝑒−𝑐
=

𝑒𝑐

𝑒𝑐 − 1
≤ 𝑒𝑐

𝑐
.

For the second sum, notice that the function 𝑡𝑏𝑒−𝑐𝑡𝑝 achieves the maximum at 𝑡* =
(︁
𝑏
𝑐𝑝

)︁ 1
𝑝 . Then

∞∑︁
𝑗=0

𝑗𝑏𝑒−𝑐𝑗
𝑝 ≤ 𝑡* (𝑡*)𝑏 𝑒−𝑐(𝑡

*)𝑝 +

∫︁ ∞

0
𝑡𝑏𝑒−𝑐𝑡

𝑝
𝑑𝑡

=

(︂
𝑏

𝑐𝑝

)︂ 𝑏+1
𝑝

𝑒
− 𝑏

𝑝 +
1

(𝑏+ 1)𝑐
𝑏+1
𝑝

∫︁ ∞

0
𝑒−𝑦

𝑝
𝑏+1

𝑑𝑦

=

(︃
𝑏

𝑒
𝑏

𝑏+1 𝑐𝑝

)︃ 𝑏+1
𝑝

+
1

𝑝𝑐
𝑏+1
𝑝

Γ

(︂
𝑏+ 1

𝑝

)︂

≤
(︃

𝑏

𝑒
𝑏

𝑏+1 𝑐𝑝

)︃ 𝑏+1
𝑝

+
1

𝑝𝑐
𝑏+1
𝑝

(︂
𝑏+ 1

𝑝

)︂ 𝑏+1
𝑝

≤ 2

𝑝
·
(︂
𝑏+ 1

𝑐𝑝

)︂ 𝑏+1
𝑝

.

For the third sum, we will use the identity

(𝑎+ 𝑗)𝑝 ≥ 1

2
(𝑎𝑝 + 𝑗𝑝) .
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Now, consider the following chain of inequalities and change of variables:

∞∑︁
𝑗=0

𝑒−𝑐(𝑎+𝑗)
𝑝 ≤ 𝑒−

𝑐
2
𝑎𝑝

∞∑︁
ℓ=0

𝑒−
𝑐
2
ℓ𝑝

≤ 𝑒−
𝑐
2
𝑎𝑝
(︂
1 +

∫︁ ∞

0
𝑒−

𝑐
2
𝑡𝑝𝑑𝑡

)︂
= 𝑒−

𝑐
2
𝑎𝑝

(︃
1 +

2
1
𝑝

𝑐
1
𝑝

∫︁ ∞

0
𝑒−𝑦

𝑝
𝑑𝑦

)︃

= 𝑒−
𝑐
2
𝑎𝑝

(︃
1 +

2
1
𝑝

𝑝𝑐
1
𝑝

Γ

(︂
1

𝑝

)︂)︃
≤ 𝑒−

𝑐
2
𝑎𝑝

(︃
1 +

1

𝑝𝑐
1
𝑝

(︂
2

𝑝

)︂ 1
𝑝

)︃
.

This completes the proof. ⊓⊔

4.6.2 Local Hamiltonians and quantum Gibbs states

Local Hamiltonians. As mentioned in Section 4.1, in this chapter, we consider Hamiltonians
that are geometrically local. To describe this notion more precisely, we consider a 𝐷-dimensional
lattice Λ ⊂ Z𝐷 that contains 𝑛 sites with a 𝑑-dimensional qudit (spin) on each site. We denote the
dimension of the Hilbert space associated to the lattice Λ by 𝒟Λ.

Let 𝐵(𝑟, 𝑖) := {𝑗 ∈ Λ|dist(𝑖, 𝑗) ≤ 𝑟} denote a ball (under the Manhattan distance on the lattice)
of size 𝑟 centered at site 𝑖. For a given connected set𝑋 ∈ Λ, let diam(𝑋) := max{dist(𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑋}
denote the diameter of this set, 𝑋𝑐 := Λ ∖𝑋 denote the complement of this set, and 𝜕𝑋 denote its
boundary. Given two sets 𝑋,𝑌 ∈ Λ, we define dist(𝑋,𝑌 ) := min{dist(𝑖, 𝑗) : 𝑖 ∈ 𝑋, 𝑗 ∈ 𝑌 }.

The Hamiltonian of this system is

𝐻 =
∑︁
𝑋⊂Λ

𝐻𝑋 .

Each term 𝐻𝑋 acts only on the sites in 𝑋 and 𝑋 is restricted to be a connected set with respect
to Λ. We call the Hamiltonian 𝜅-local when the support of all the local terms 𝐻𝑋 is |𝑋| ≤ 𝜅. We
further assume for all terms 𝐻𝑋 , diam(𝑋) ≤ 𝒪(1). We also define the Hamiltonian restricted to a
region 𝐴 ⊆ Λ by 𝐻𝐴 =

∑︀
𝑋⊆𝐴𝐻𝑋 .

In order to describe our Hamiltonians, we consider an orthogonal Hermitian basis for the space
of operators acting on each qudit. For instance, for qubits, this basis consists of the Pauli operators.
By decomposing each local term 𝐻𝑋 in terms of the tensor product of such basis operators, we find
the following canonical form for the Hamiltonian 𝐻:

Definition 79 (Canonical representation for 𝜅-local Hamiltonians). A 𝜅-local Hamiltonian 𝐻 on
a lattice Λ can be written as a sum of 𝑚 Hermitian operators 𝐸ℓ each having a connected support
with respect to Λ and acting non-trivially on at most 𝜅 qudits. That is,

𝐻 =

𝑚∑︁
ℓ=1

𝜇ℓ𝐸ℓ. (4.16)
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where 𝜇ℓ ∈ R and we assume ||𝐸ℓ|| ≤ 1, tr[𝐸2
ℓ ] = 𝒟Λ, 𝐸†

ℓ = 𝐸ℓ for ℓ ∈ [𝑚], and

tr[𝐸𝑘𝐸ℓ] = 0 for 𝑘 ̸= ℓ. (4.17)

Since we assume 𝐻 is geometrically local (i.e. it is defined over a lattice), it holds that 𝑚 the
number of local terms in (4.16) satisfies 𝑚 = 𝒪(|Λ|) = 𝒪(𝑛).

As discussed earlier, we extensively use the notion of quasi-local operators, which we now for-
mally define.

Definition 80 (Quasi-local operators). An operator 𝐴 is said to be (𝜏, 𝑎1, 𝑎2, 𝜁)-quasi-local if it can
be written as

𝐴 =
𝑛∑︁
ℓ=1

𝑔ℓ𝐴ℓ with 𝑔ℓ ≤ 𝑎1 · exp(−𝑎2ℓ𝜏 ),

𝐴ℓ =
∑︁
|𝑍|=ℓ

𝑎𝑍 , max
𝑖∈Λ

(︃ ∑︁
𝑍:𝑍∋𝑖

‖𝑎𝑍‖
)︃

≤ 𝜁, (4.18)

where the sets 𝑍 ⊂ Λ are restricted to be balls.3

Although local operators are morally a special case of quasi-local operators (when 𝜏 = ∞), we
will reserve the above notation for operators with 𝜏 ≤ 1. A useful tool for analyzing quasi-locality
is the Lieb-Robinson bound, which shows a light-cone like behavior of the time evolution operator.

Fact 81 (Lieb-Robinson bound [LR72], [NS09]). Let 𝐴,𝐵 be operators supported on regions 𝑋,𝑌
of the 𝐷 dimensional lattice Λ respectively. Also, let 𝐻 be a geometrically local Hamiltonian. There
exist 𝒪(1) constants 𝑣LR, 𝑓, 𝑐 that only depend on the details of the Hamiltonian such that

‖[𝑒𝑖𝐻𝑡𝐴𝑒−𝑖𝐻𝑡, 𝐵]‖ ≤ 𝑓‖𝐴‖‖𝐵‖ ·min (|𝜕𝑋|, |𝜕𝑌 |) ·min
(︁
𝑒𝑐(𝑣LR|𝑡|−dist(𝑋,𝑌 )), 1

)︁
.

Gibbs states. At an inverse-temperature 𝛽, a quantum many-body system with the Hamiltonian
𝐻(𝜇) is in the Gibbs (thermal) state if it is given by

𝜌𝛽(𝜇) =
𝑒−𝛽𝐻(𝜇)

tr[𝑒−𝛽𝐻(𝜇)]
. (4.19)

The partition function of this system is defined by 𝑍𝛽(𝜇) = tr[𝑒−𝛽𝐻(𝜇)].

Remark 82. In our notation, we sometimes drop the dependency of the partition function or the
Gibbs state on 𝜇. We also often simply use the term local Hamiltonian 𝐻 or quasi-local operator 𝐴
when referring to Definition 128 and Definition 80.

3The assumption that 𝑍 is a ball suffices for us. Our results on quasi-local operators also generalize to the case
where 𝑍 is an arbitrary regular shape, for example when the radii of the balls inscribing and inscribed by 𝑍 are of
constant proportion to each other.
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4.6.3 Quantum belief propagation

Earlier we saw that we could express the Gibbs state of a Hamiltonian 𝐻 by Eq. (4.19). Suppose
we alter this Hamiltonian by adding a term 𝑉 such that

𝐻(𝑠) = 𝐻 + 𝑠𝑉, 𝑠 ∈ [0, 1]. (4.20)

How does the Gibbs state associated with this Hamiltonian change? If the new term 𝑉 commutes
with the Hamiltonian 𝐻, i.e., [𝐻,𝑉 ] = 0, then the derivative of the Gibbs state of 𝐻(𝑠) is given by

𝑑

𝑑𝑠
𝑒−𝛽𝐻(𝑠) = −𝛽𝑒−𝛽𝐻(𝑠)𝑉 = −𝛽

2

{︁
𝑒−𝛽𝐻(𝑠), 𝑉

}︁
, (4.21)

where {𝑒−𝛽𝐻(𝑠), 𝑉 } = 𝑒−𝛽𝐻(𝑠)𝑉 + 𝑉 𝑒−𝛽𝐻(𝑠) denotes the anti-commutator. In the non-commuting
case though, finding this derivative is more complicated. The quantum belief propagation is a
framework developed in [Has07b, Kim17, KBa19b] for finding such derivatives in a way that reflects
the locality of the system.

Definition 83 (Quantum belief propagation operator). For every 𝑠 ∈ [0, 1], 𝛽 ∈ R, define 𝐻(𝑠) =
𝐻 + 𝑠𝑉 where 𝑉 =

∑︀
𝑗,𝑘 𝑉𝑗,𝑘|𝑗⟩⟨𝑘| is a Hermitian operator. Also let 𝑓𝛽(𝑡) be a function whose

Fourier transform is

𝑓𝛽(𝜔) =
tanh(𝛽𝜔/2)

𝛽𝜔/2
, (4.22)

i.e., 𝑓𝛽(𝑡) = 1
2𝜋

∫︀
𝑑𝜔𝑓𝛽(𝜔)𝑒

𝑖𝜔𝑡. The quantum belief propagation operator Φ𝐻(𝑠)(𝑉 ) is defined by

Φ𝐻(𝑠)(𝑉 ) =

∫︁ ∞

−∞
𝑑𝑡𝑓𝛽(𝑡) 𝑒

−𝑖𝐻(𝑠)𝑡 𝑉 𝑒𝑖𝐻(𝑠)𝑡.

Equivalently, in the energy basis of 𝐻(𝑠) =
∑︀

𝑗 ℰ𝑗(𝑠) |𝑗⟩⟨𝑗|, we can write

Φ𝐻(𝑠)(𝑉 ) =
∑︁
𝑗,𝑘

|𝑗⟩⟨𝑘| 𝑉𝑗,𝑘 𝑓𝛽(ℰ𝑗(𝑠)− ℰ𝑘(𝑠)). (4.23)

Proposition 84 (cf. [Has07b]). In the same setup as Definition 83, it holds that

𝑑

𝑑𝑠
𝑒−𝛽𝐻(𝑠) = −𝛽

2

{︁
𝑒−𝛽𝐻(𝑠),Φ𝐻(𝑠)(𝑉 )

}︁
. (4.24)

4.6.4 Change in the spectrum after applying local operators

For a Hamiltonian 𝐻, let 𝑃𝐻≤𝑥 and 𝑃𝐻≥𝑦 be projection operators onto the eigenspaces of 𝐻 whose
energies are in ≤ 𝑥 and ≥ 𝑦, respectively (we use similar notation 𝑃𝐴≤𝑥, 𝑃

𝐴
≥𝑦 for the quasi-local

operator 𝐴). Consider a quantum state |𝜓⟩ in the low-energy part of the spectrum such that
𝑃𝐻≤𝑥|𝜓⟩ = |𝜓⟩. Suppose this states |𝜓⟩ is perturbed by applying a local operator 𝑂𝑋 on a subset
𝑋 ⊂ Λ of its qudits. Intuitively, we expect that the operator 𝑂𝑋 only affects the energy of |𝜓⟩ up
to 𝒪(|𝑋|), i.e., ‖𝑃𝐻≥𝑦𝑂𝑋 |𝜓⟩‖ ≈ 0 for 𝑦 ≫ 𝑥+ |𝑋|. A simple example is when |𝜓⟩ is the eigenstate of
a classical spin system. By applying a local operation that flips the spins in a small region 𝑋, the
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energy changes at most by 𝒪(|𝑋|). The following lemma rigorously formulates the same classical
intuition for quantum Hamiltonians

Lemma 85 (Theorem 2.1 of [AKL16]). Let 𝐻 be an arbitrary 𝜅-local operator such that

𝐻 =
∑︁
|𝑍|≤𝜅

ℎ𝑍 , max
𝑖∈Λ

∑︁
𝑍:𝑍∋𝑖

‖ℎ𝑍‖ ≤ 𝑔. (4.25)

Then, for an arbitrary operator 𝑂𝑋 which is supported on 𝑋 ⊆ Λ, the operator norm of 𝑃𝐻≥𝑦𝑂𝑋𝑃
𝐻
≤𝑥

is upper-bounded by

‖𝑃𝐻≥𝑦𝑂𝑋𝑃𝐻≤𝑥‖ ≤ ‖𝑂𝑋‖ · exp
(︀
− 1

2𝑔𝜅
(𝑦 − 𝑥− 2𝑔|𝑋|)

)︀
. (4.26)

In our analysis, we need an different version of this lemma for quasi-local operators instead of
𝜅-local operators. The new lemma will play a central role in lower-bounding the variance of quasi-
local operators. The proof follows by the analysis of a certain moment function (as opposed to the
moment generating function in [AKL16]). Due to formal similarities between the proofs, we defer
the proof of the next lemma to Section 4.10.3.

Lemma 86 (Variation of [AKL16] for quasi-local operators). Let 𝐴 be a (𝜏, 𝑎1, 𝑎2, 1)-quasi-local
operator, as given in Eq. (4.18), with 𝜏 ≤ 1. For an arbitrary operator 𝑂𝑋 supported on a subset
𝑋 ⊆ Λ with |𝑋| = 𝑘0 and ‖𝑂𝑋‖ = 1, we have

‖𝑃𝐴≥𝑥+𝑦𝑂𝑋𝑃𝐴≤𝑥‖ ≤ 𝑐5 · 𝑘0 exp
(︁
− (𝜆1𝑦/𝑘0)

1/𝜏1
)︁
, (4.27)

where 𝜏1 := 2
𝜏 − 1, 𝑐5 and 𝜆1 are constants depending on 𝑎1 and 𝑎2 as 𝑐5 ∝ 𝑎

2/𝜏
2 and 𝜆1 ∝ 𝑎

−2/𝜏
2

respectively.

4.6.5 Local reduction of global operators

An important notion in our proofs will be a reduction of a global operator to a local one, which has
influence on a site 𝑖. Fix a subset 𝑍 ⊆ Λ and an operator 𝑂 supported on 𝑍. Define

𝑂(𝑖) := 𝑂 − tr𝑖[𝑂]⊗ 1𝑖

𝑑
, (4.28)

where operator 1𝑖 is the identity operator on the 𝑖th site, 𝑑 is the local dimension, tr𝑖 is the partial
trace operation with respect to the site 𝑖. Note that 𝑂(𝑖) removes all the terms in 𝑂 that do not act on
the 𝑖th site. This can be explicitly seen by introducing a basis {𝐸𝛼𝑌 }𝛼∈N,𝑌⊆𝑍 of Hermitian operators,
where 𝑌 labels the support of 𝐸𝛼𝑌 and 𝛼 labels several possible operators on the same support. We
can assume that tr[(𝐸𝛼𝑌 )

2] = 𝒟Λ, tr𝑖[𝐸
𝛼
𝑌 ] = 0 for every 𝑖 ∈ 𝑌 , and the orthogonality condition

tr[𝐸𝛼𝑌𝐸
𝛼′
𝑌 ′ ] = 0 holds if 𝛼 ̸= 𝛼′ or 𝑌 ̸= 𝑌 ′. These conditions are satisfied by the appropriately

normalized Pauli operators. Expand
𝑂 =

∑︁
𝛼,𝑌

𝑔𝛼,𝑌𝐸
𝛼
𝑌 .
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Then
𝑂(𝑖) =

∑︁
𝛼,𝑌

𝑔𝛼,𝑌𝐸
𝛼
𝑌 −

∑︁
𝛼,𝑌

𝑔𝛼,𝑌 tr𝑖[𝐸
𝛼
𝑌 ]⊗

1𝑖

𝑑
=

∑︁
𝛼,𝑌 :𝑌 ∋𝑖

𝑔𝛼,𝑌𝐸
𝛼
𝑌 .

Thus, 𝑂(𝑖) is an operator derived from 𝑂, by removing all 𝐸𝛼𝑌 which act as identity on 𝑖. The
following claim shows that the Frobenius norm of a typical 𝑂(𝑖) is not much small in comparison to
the Frobenius norm of 𝑂.

Claim 87. For every operator 𝑂 and 𝑂(𝑖) defined in Eq. (4.28), it holds that

max
𝑖∈𝑍

‖𝑂(𝑖)‖2𝐹 ≥ 1

|𝑍|
∑︁
𝑖∈𝑍

‖𝑂(𝑖)‖2𝐹 ≥ 1

|𝑍|‖𝑂‖2𝐹 . (4.29)

Proof. Using the identities tr[𝐸𝛼𝑌𝐸
𝛼′
𝑌 ′ ] = 0 and tr[(𝐸𝛼𝑌 )

2] = 𝒟Λ, we have

‖𝑂‖2𝐹 = 𝒟Λ

∑︁
𝑌,𝛼

𝑔2𝛼,𝑌 ≤ 𝒟Λ

∑︁
𝑖∈𝑍

∑︁
𝛼,𝑌 :𝑌 ∋𝑖

𝑔2𝛼,𝑌 =
∑︁
𝑖∈𝑍

‖𝑂(𝑖)‖2𝐹 ,

where the inequality comes from the fact that 𝑂 is supported on the subset 𝑍 (i.e., 𝑌 ⊆ 𝑍). This
completes the proof. ⊓⊔

4.7 A lower bound on the sample complexity

In this section, we prove a lower bound on the sample complexity of the quantum Hamiltonian
learning problem as claimed earlier in Theorem 69.

Theorem 88 (Restatement of Theorem 69). The number of copies 𝑁 of the Gibbs state needed
to solve the quantum Hamiltonian learning problem and outputs a 𝜇̂ satisfying ‖𝜇̂ − 𝜇‖2 ≤ 𝜀 with
probability 1− err is lower bounded by

𝑁 ≥ Ω
(︁√𝑚+ log(1− err)

𝛽𝜀

)︁
.

Proof. In order to prove the lower bound, we consider learning the parameters 𝜇 ∈ R𝑚 of the
following class of one-local Hamiltonians on 𝑚 qubits:

𝐻(𝜇) =

𝑚∑︁
𝑖=1

𝜇𝑖|1⟩⟨1|𝑖,

where |1⟩⟨1|𝑖 is projection onto a basis |1⟩ on the 𝑖th qudit. Let 𝑇𝑚 : {𝜇 ∈ R𝑚+ :
∑︀

𝑖 𝜇
2
𝑖 ≤ 100𝜀2} be

an orthant of the hypersphere of radius 𝜃 in R𝑚+ . We have the following claim.

Claim 89. There exists a collection of 2𝑚 points in 𝑇𝑚, such that the ℓ2 distance between each pair
is ≥ 𝜀.

Proof. Pick 2𝑚 points uniformly at random in 𝑇𝑚. By union bound, the probability that at least
one pair is at a distance of at most 𝜀 is at most (2𝑚)2 times the probability that a fixed pair of
points is at a distance of at most 𝜀. But the latter probability is upper bounded by the ratio between
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the volume of a hypersphere of radius 𝜀 and the volume of 𝑇𝑚, which is 𝜀𝑚

(10𝜀)𝑚/2𝑚
= 1

5𝑚 . Since
(2𝑚)2 1

5𝑚 < 1, the claim concludes. ⊓⊔

Let these set of 2𝑚 points be 𝑆. For some temperature 𝛽 > 0 and unknown 𝜇 ∈ 𝑆, suppose 𝒜
is an algorithm that is given 𝑁 copies of 𝜌𝛽(𝜇) and, with probability 1− err, outputs 𝜇′ satisfying
‖𝜇′ − 𝜇‖2 ≤ 𝜀. We now use 𝒜 to assign the estimated 𝜇̂ to exactly one of the parameters 𝜇. Once
the learning algorithm obtains an output 𝜇′, we can find the closest point in 𝑆 (in ℓ2 distance) as
our estimate of 𝜇, breaking ties arbitrarily. With probability 1 − err, the closest 𝜇 ∈ 𝑆 to 𝜇′ is
the correct 𝜇 since by the construction of 𝑆, ‖𝜇′ − 𝜇‖2 ≤ 𝜀. Thus, the algorithm 𝒜 can be used
to solve the problem of estimating the parameters 𝜇 themselves (not only approximating it). We
furthermore show that the number of samples required to estimate 𝜇 ∈ 𝑆 is large using lower bounds
in the quantum state discrimination. We will directly use the lower bound from [HKK08] (as given
in [HW12]). Before we plug in their formula, we need to bound on the spectral norm of 𝜌𝛽(𝜇) for
an arbitrary 𝜇 ∈ 𝑆 (denoted by ||𝜌𝛽(𝜇)||). That is,

max
𝜇∈𝑆

{2𝑚‖𝜌𝛽(𝜇)‖} = max
𝜇∈𝑆

2𝑚

(︃
𝑚⨂︁
𝑖=1

⃦⃦⃦⃦
1

1 + 𝑒−𝛽𝜇𝑖
|0⟩⟨0|+ 𝑒−𝛽𝜇𝑖

1 + 𝑒−𝛽𝜇𝑖
|1⟩⟨1|

⃦⃦⃦⃦)︃

= max
𝜇∈𝑆

(︃
𝑚⨂︁
𝑖=1

⃒⃒⃒⃒
2

1 + 𝑒−𝛽𝜇𝑖

⃒⃒⃒⃒)︃

= max
𝜇∈𝑆

(︃
𝑚⨂︁
𝑖=1

⃒⃒⃒⃒
2𝑒𝛽𝜇𝑖

𝑒𝛽𝜇𝑖 + 1

⃒⃒⃒⃒)︃

≤ max
𝜇∈𝑆

(︃
𝑚⨂︁
𝑖=1

⃒⃒⃒⃒
2𝑒𝛽𝜇𝑖

2

⃒⃒⃒⃒)︃
= max

𝜇∈𝑆

(︁
𝑒𝛽

∑︀𝑚
𝑖=1 𝜇𝑖

)︁
≤ 𝑒𝛽

√
𝑚
√∑︀𝑚

𝑖=1 𝜇
2
𝑖 ≤ 𝑒𝛽

√
𝑚·10𝜀,

since
∑︀

𝑖 𝜇
2
𝑖 ≤ 100𝜀2 for all 𝑖 ∈ 𝑆. Thus, the lower bound for state identification of {𝐻(𝜇) : 𝜇 ∈ 𝑆}

in [HW12, Equation 2] (cf. [HKK08] for the original statement) implies that

𝑁 ≥ log |𝑆|+ log(1− err)

log (max𝜇∈𝑆{2𝑚‖𝜌(𝜇)𝛽‖})
=
𝑚 log 2 + log(1− err)

10
√
𝑚𝛽𝜀

= Ω
(︁√𝑚+ log(1− err)

𝜀𝛽

)︁
.

This establishes the lower bound. ⊓⊔

4.8 Efficient sample complexity assuming strong convexity

In this section, we provide more details on how one can find rigorous upper bounds on the sample
complexity of the Hamiltonian learning problem using the notions of sufficient statistics and the
strong convexity from the fields of stochastic convex optimization and statistics.

4.8.1 Sufficient statistics

As discussed in the main text, local expectations of the Gibbs states can be used to uniquely specify
these states. This provides us with “sufficient statistics” for learning the Hamiltonians from 𝜌𝛽 .
This observation is formalized in the following result:
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Proposition 90 (Restatement of Proposition 70). Consider the following two Gibbs states

𝜌𝛽(𝜇) =
𝑒−𝛽

∑︀
ℓ 𝜇ℓ𝐸ℓ

tr[𝑒−𝛽
∑︀

ℓ 𝜇ℓ𝐸ℓ ]
, 𝜌𝛽(𝜆) =

𝑒−𝛽
∑︀

ℓ 𝜆ℓ𝐸ℓ

tr[𝑒−𝛽
∑︀

ℓ 𝜆ℓ𝐸ℓ ]
(4.30)

such that tr[𝜌𝛽(𝜆)𝐸𝑗 ] = tr[𝜌𝛽(𝜇)𝐸𝑗 ] for all 𝑗 ∈ [𝑚], i.e. all the 𝜅-local local expectations of 𝜌𝛽(𝜆)
match that of 𝜌𝛽(𝜇). Then, we have 𝜌𝛽(𝜆) = 𝜌𝛽(𝜇), which in turns implies 𝜆ℓ = 𝜇ℓ for ℓ ∈ [𝑚].

Proof. We consider the relative entropy between 𝜌𝛽(𝜆) and the Gibbs state 𝜌𝛽(𝜇). We have

𝑆 (𝜌𝛽(𝜇)‖𝜌𝛽(𝜆)) = tr [𝜌𝛽(𝜇) (log 𝜌𝛽(𝜇)− log 𝜌𝛽(𝜆))]

= −𝑆(𝜌𝛽(𝜇)) + 𝛽 · tr
[︃
𝜌𝛽(𝜇)

∑︁
ℓ

𝜆ℓ𝐸ℓ

]︃
+ log𝑍(𝜆) (4.31)

(1)
= −𝑆(𝜌𝛽(𝜇)) + 𝛽

∑︁
ℓ

𝜆ℓtr[𝜌𝛽(𝜆)𝐸ℓ] + log𝑍(𝜆) (4.32)

= −𝑆(𝜌𝛽(𝜇)) + 𝑆(𝜌𝛽(𝜆))

(2)

≥ 0, (4.33)

where (1) follows because tr[𝜌𝛽(𝜇)𝐸ℓ] = tr[𝜌𝛽(𝜆)𝐸ℓ] for all ℓ ∈ [𝑚] and (2) used the positivity of
relative entropy. Similarly, we can exchange the role of 𝜌(𝜇) and 𝜌(𝜆) in (4.33) and get

𝑆 (𝜌𝛽(𝜆)‖𝜌𝛽(𝜇)) = −𝑆(𝜌𝛽(𝜆)) + 𝑆(𝜌𝛽(𝜇)) ≥ 0. (4.34)

Combining these bounds imply 𝑆(𝜌𝛽(𝜇)) = 𝑆(𝜌𝛽(𝜆)) and hence from Eq. (4.33), we get
𝑆(𝜌𝛽(𝜇)‖𝜌𝛽(𝜆)) = 0. It is known that the relative entropy of two distribution is zero only when
𝜌𝛽(𝜇) = 𝜌𝛽(𝜆). Hence, we also have log 𝜌𝛽(𝜇) = log 𝜌𝛽(𝜆) or equivalently up to an additive term∑︀𝑚

ℓ=1 𝜇ℓ𝐸ℓ =
∑︀𝑚

ℓ=1 𝜆ℓ𝐸ℓ. Since the operators 𝐸ℓ form an orthogonal basis (see Eq. (4.17)), we see
that 𝜆ℓ = 𝜇ℓ for all ℓ ∈ [𝑚]. ⊓⊔

Remark 91. When the local expectations of the two Gibbs states only approximately match, i.e.,

|tr[𝜌𝛽(𝜇)𝐸ℓ]− tr[𝜌𝛽(𝜆)𝐸ℓ]| ≤ 𝛿

for ℓ ∈ [𝑚], then a similar argument to (4.33) shows that 𝑆(𝜌𝛽(𝜇)‖𝜌𝛽(𝜆)) ≤ 𝒪(𝑚𝛿). By applying
Pinsker’s inequality4, we get ||𝜌𝛽(𝜇)− 𝜌𝛽(𝜆)||21 ≤ 𝒪(𝑚𝛿) = 𝒪(𝑛𝛿), where we used the fact that for
geometrically-local Hamiltonians 𝑚 = 𝒪(𝑛).

Given Proposition 90, we ask if there is an algorithm that finds the Gibbs state from its local
expectations. A solution to this question is to use the maximum entropy optimization [Jay57b,
BKL+19]. This is also closely related to the problem of maximum likelihood estimation that is
used often to analyze the sample complexity of statistical problems. Formally, this problem can be
expressed as follows:

4Pinsker’s inequality states that for two density matrices 𝜌, 𝜎, we have ‖𝜌− 𝜎‖21 ≤ 2 ln 2 · 𝑆(𝜌‖𝜎).
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max
𝜌

𝑆(𝜌)

s.t. tr[𝜌𝐸ℓ] = 𝑒ℓ, ∀ℓ ∈ [𝑚]

𝜌 > 0, tr[𝜌] = 1.

(4.35)

where 𝑆(𝜌) = −tr[𝜌 log 𝜌] is the von Neumann entropy of 𝜌.
Below, we will be mainly concerned with the convex dual of this optimization which directly

produces the interaction coefficients 𝜇. Understanding the effect of statistical errors on the dual
optimization program (and in more generality, stochastic convex optimization) will be the main the
subject of the next few sections.

4.8.2 Stochastic convex optimization

Suppose we want to solve the optimization

max
𝑥∈R𝑚

𝑓(𝑥)

for a function 𝑓 : R𝑚 → R which is of the form 𝑓(𝑥) = E𝑦∼𝒟[𝑔(𝑥, 𝑦)]. Here 𝑔(𝑥, 𝑦) is some convex
function and the expectation E𝑦∼𝒟 is taken with respect to an unknown distribution 𝒟. Algorithms
for this maximization problem are based on obtaining i.i.d. samples 𝑦 drawn from the distribution 𝒟.
In practice, we can only receive finite samples 𝑦1, 𝑦2, . . . , 𝑦ℓ from such a distribution. Hence, instead
of the original optimization, we solve an empirical version

max
𝑥∈R𝑚

1

ℓ

ℓ∑︁
𝑘=1

𝑔(𝑥, 𝑦𝑘).

The natural question therefore is: How many samples ℓ do we need to guarantee the output of the
empirical optimization is close to the original solution? One answer to this problem relies on a
property of the objective function known as strong convexity.

Definition 92 (restatement of Definition 71). Consider a convex function 𝑓 : R𝑚 ↦→ R with gradient
∇𝑓(𝑥) and Hessian ∇2𝑓(𝑥) at 𝑥. The function 𝑓 is said to be 𝛼-strongly convex in its domain if it
is differentiable and for all 𝑥, 𝑦, and

𝑓(𝑦) ≥ 𝑓(𝑥) +∇𝑓(𝑥)⊤(𝑦 − 𝑥) +
1

2
𝛼||𝑦 − 𝑥||22,

or equivalently if the minimum eigenvalue of the Hessian 𝜎min(∇2𝑓(𝑥)) satisfies

𝜎min(∇2𝑓(𝑥)) ≥ 𝛼.

In other words, for any vector 𝑣 ∈ R𝑚 it holds that
∑︀

𝑖,𝑗 𝑣𝑖𝑣𝑗
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓(𝑥) ≥ 𝛼||𝑣||22.

Next, we discuss how the framework of convex optimization and in particular strong convexity,
can be applied to the Hamiltonian learning problem. To this end, we define the following optimiza-
tion problems based on the convex dual of the optimization (4.35)
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Definition 93 (Optimization program for learning the Hamiltonian). We denote the objective func-
tion in the Hamiltonian learning problem and its approximate version by 𝐿(𝜆) and 𝐿̂(𝜆) respectively,
i.e.,

𝐿(𝜆) = log𝑍𝛽(𝜆) + 𝛽 ·
𝑚∑︁
ℓ=1

𝜆ℓ𝑒ℓ, 𝐿̂(𝜆) = log𝑍𝛽(𝜆) + 𝛽 ·
𝑚∑︁
ℓ=1

𝜆ℓ𝑒ℓ, (4.36)

where the partition function is given by 𝑍𝛽(𝜆) = tr
(︀
𝑒−𝛽

∑︀𝑚
ℓ=1 𝜆ℓ𝐸ℓ

)︀
. The parameters of the Hamilto-

nian that we intend to learn are 𝜇 = argmin𝜆∈R𝑚:‖𝜆‖≤1 𝐿(𝜆). As before, we also define the empirical
version of this optimization by

𝜇̂ = argmin
𝜆∈R𝑚:||𝜆||≤1

𝐿̂(𝜆). (4.37)

We prove later in Lemma 100 that log𝑍𝛽(𝜆) is a convex function in parameters 𝜆 and thus, the
optimization in (4.37) is a convex program whose solution can be in principle algorithmically found.
In this work, we do not constraint ourselves with the running time of solving (4.37). We instead
obtain sample complexity bounds as formulated more formally in the next theorem.

Theorem 94 (Restatement of Theorem 73). Let 𝛿, 𝛼 > 0. Suppose the local expectations 𝑒ℓ are
determined up to error 𝛿, i.e., |𝑒ℓ−𝑒ℓ| ≤ 𝛿 for all ℓ ∈ [𝑚]. Additionally, assume the strong convexity
condition 𝜎min(∇2 log𝑍(𝜆)) ≥ 𝛼 holds for ||𝜆|| ≤ 1. Then the optimal solution to the program (4.37)
satisfies

||𝜇− 𝜇̂||2 ≤
2𝛽

√
𝑚𝛿

𝛼
. (4.38)

Proof. From the definition of 𝜇̂ as the optimal solution of 𝐿̂ in (4.37), we see that 𝐿̂(𝜇̂) ≤ 𝐿̂(𝜇).
Thus, we get

log𝑍𝛽(𝜇̂) + 𝛽 ·
𝑚∑︁
ℓ=1

𝜇̂ℓ𝑒ℓ ≤ log𝑍𝛽(𝜇) + 𝛽 ·
𝑚∑︁
ℓ=1

𝜇ℓ𝑒ℓ.

or equivalently,

log𝑍𝛽(𝜇̂) ≤ log𝑍𝛽(𝜇) + 𝛽 ·
𝑚∑︁
ℓ=1

(𝜇ℓ − 𝜇̂ℓ)𝑒ℓ. (4.39)

We show later in Lemma 99 that for every ℓ ∈ [𝑚], we have 𝜕
𝜕𝜇ℓ

log𝑍𝛽(𝜇) = −𝛽𝑒ℓ.5 This along with
the assumption 𝜎min(∇2 log𝑍(𝜇)) ≥ 𝛼 in the theorem statement, implies that for every 𝜇′ with
||𝜇′|| ≤ 1

log𝑍𝛽(𝜇
′) ≥ log𝑍𝛽(𝜇)− 𝛽 ·

𝑚∑︁
ℓ=1

(𝜇′ℓ − 𝜇ℓ)𝑒ℓ +
1

2
𝛼||𝜇′ − 𝜇||22. (4.40)

5In particular, see Eq. (4.45), where we showed 𝜕
𝜕𝜇ℓ

log𝑍𝛽(𝜇) = −𝛽 · tr[𝐸ℓ𝜌𝛽(𝜇)] = −𝛽𝑒ℓ.
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Hence, by choosing 𝜇′ = 𝜇̂ and combining (4.40) and (4.39), we get

log𝑍𝛽(𝜇)− 𝛽 ·
𝑚∑︁
ℓ=1

(𝜇̂ℓ − 𝜇ℓ)𝑒ℓ +
1

2
𝛼||𝜇̂− 𝜇||22 ≤ log𝑍𝛽(𝜇) + 𝛽 ·

𝑚∑︁
ℓ=1

(𝜇ℓ − 𝜇̂ℓ)𝑒ℓ

which further implies that

1

2
𝛼||𝜇̂− 𝜇||22 ≤ 𝛽 ·

𝑚∑︁
ℓ=1

(𝜇̂ℓ − 𝜇ℓ)(𝑒ℓ − 𝑒ℓ),

≤ 𝛽 · ||𝜇̂− 𝜇||2 · ||𝑒− 𝑒||2.

Hence, we have

||𝜇̂− 𝜇||2 ≤
2𝛽

𝛼
||𝑒− 𝑒||2 ≤

2𝛽
√
𝑚𝛿

𝛼
.

⊓⊔

Remark 95. We note that the bound (4.38) in Theorem 94 can be also derived when other methods
are used instead of the maximum entropy optimization or its dual in Definition 93. Suppose we use
an alternative approach, which could be an approximate version of the maximum entropy method,
a heuristic quantum algorithm that variationally prepares the Gibbs state, or one that infers the
interactions in a different way without relying on the thermal averages. As long as the interaction
coefficients inferred via such method (denoted by 𝜇̃) satisfy ||𝜇̃|| ≤ 1 and their corresponding Gibbs
state possesses local expectations 𝑒𝑘 within 𝛿 distance of the original values, a similar expression as
in (4.38) bounds the error of that approach as well.

More formally strong convexity leads to Equation 4.40, which says

log𝑍𝛽(𝜇̃) ≥ log𝑍𝛽(𝜇)− 𝛽 ·
𝑚∑︁
ℓ=1

(𝜇̃ℓ − 𝜇ℓ)𝑒ℓ +
1

2
𝛼||𝜇̃− 𝜇||22.

Switching 𝜇 and 𝜇̃ as well as 𝑒ℓ and 𝑒ℓ, we have

log𝑍𝛽(𝜇) ≥ log𝑍𝛽(𝜇̃)− 𝛽 ·
𝑚∑︁
ℓ=1

(𝜇ℓ − 𝜇̃ℓ)𝑒ℓ +
1

2
𝛼||𝜇̃− 𝜇||22.

Adding these equations and cancelling some terms, we obtain

0 ≥ 𝛽 ·
𝑚∑︁
ℓ=1

(𝜇ℓ − 𝜇̃ℓ)(𝑒ℓ − 𝑒ℓ) + 𝛼||𝜇̃− 𝜇||22.

This leads to the inequality (using Cauchy-Schwartz)

𝛼||𝜇̃− 𝜇||22 ≤ 𝛽 · ||𝜇̃− 𝜇||2 · ||𝑒− 𝑒||2,

which is equivalent to

||𝜇̃− 𝜇||2 ≤
𝛽

𝛼
||𝑒− 𝑒||2.
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Finally, we obtain the following upper bound on the sample complexity assuming the log-
partition function is strongly convex.

Corollary 96 (Sample complexity from strong convexity). Under the same conditions as in The-
orem 94, the number of copies of the Gibbs state 𝜌𝛽 that suffice to solve the quantum Hamiltonian
learning problem and outputs a 𝜇̂ satisfying ‖𝜇̂− 𝜇‖2 ≤ 𝜀 with probability 1− err is

𝑁 = 𝒪
(︃
𝛽22𝒪(𝜅)

𝛼2𝜀2
·𝑚 · log 𝑚

err

)︃
.

Proof. First observe that, using Theorem 94, as long as the error in estimating the local expectations
𝑒ℓ are

𝛿 ≤ 𝛼𝜀

2𝛽
√
𝑚
, (4.41)

we estimate the coefficients 𝜇 by 𝜇̂ such that ||𝜇̂− 𝜇||2 ≤ 𝜀. The local expectations 𝑒ℓ can be es-
timated in various ways. One method considered in [CW20, BMBO20] is to group the operators
𝐸ℓ into sets of mutually commuting observables and simultaneously measure them at once. Al-
ternatively, we can use the recent procedure in [HKP20, Theorem 1] based on a variant of shadow
tomography. In either case, the number of copies of the state needed to find all the local expectations
with accuracy 𝛿 and success probability 1− err is

𝑁 = 𝒪
(︃
2𝒪(𝜅)

𝛿2
log

𝑚

err

)︃
,

where recall that 𝜅 is the locality of the Hamiltonian. Plugging in Eq. (4.41) gives us the final
bound

𝑁 = 𝒪
(︃
𝛽22𝒪(𝜅)

𝛼2𝜀2
𝑚 log

𝑚

err

)︃
.

⊓⊔

Remark 97 (Final upper bound on the sample complexity). In the next section, we prove that the

𝛼 parameter in Corollary 96 is 𝛼 ≤ 𝑒−Θ(𝛽𝑐) · 𝛽𝑐′

𝑚 . This implies the claimed sample complexity for
the Hamiltonian learning problem in the main text, i.e.

𝑁 = 𝒪
(︃
𝑒𝒪(𝛽𝑐)

𝛽𝑐𝜀2
·𝑚3 · log 𝑚

err

)︃
. (4.42)

Notice that although we assume in the main that err, the probability of error, is a constant (e.g.,
0.01), the dependency on err in (4.42) only appears in the logarithm and can be suitably scaled.

4.9 Proof of strong convexity of quantum log-partition functions

In this section we prove the strong convexity of quantum log-partition functions.
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Theorem 98. Let 𝐻 =
∑︀𝑚

ℓ=1 𝜇ℓ𝐸ℓ be a 𝜅-local Hamiltonian over a finite dimensional lattice. For
a given inverse-temperature 𝛽, there are constants 𝑐, 𝑐′ > 3 depending on the geometric properties of
the lattice such that the following strong convexity property (see Definition 92) for log𝑍𝛽(𝜇) holds

𝜎min(∇2 log𝑍𝛽(𝜇)) ≥ 𝑒−Θ(𝛽𝑐) · 𝛽
𝑐′

𝑚
. (4.43)

In other words, for every vector 𝑣 ∈ R𝑚 we have 𝑣⊤ · ∇2 log𝑍𝛽(𝜇) · 𝑣 ≥ 𝛽𝑐
′ 𝑒−Θ(𝛽𝑐)

𝑚 · ||𝑣||226.

The proof of Theorem 98 is explained in multiple steps. In the next few sections we first review
the proof of this statement for the classical Hamiltonians. Then, we give a brief overview of the
main steps in the proof of the quantum case.

4.9.1 Step 1: Relating the Hessian to a variance

We begin our detailed proofs with finding an expression for the Hessian of log𝑍𝛽(𝜆) in terms of the
variance of a quasi-local operator.

Lemma 99. For every vector 𝑣 ∈ R𝑚, define the local operator 𝑊𝑣 =
∑︀𝑚

𝑖=1 𝑣𝑖𝐸𝑖 (for notational
convenience, later on we stop subscripting 𝑊 by 𝑣). The Hessian ∇2 log𝑍𝛽(𝜆) satisfies

𝑣⊤ ·
(︀
∇2 log𝑍𝛽(𝜆)

)︀
· 𝑣 =

𝛽2

2
tr
[︁{︀
𝑊𝑣,Φ𝐻(𝜆)(𝑊𝑣)

}︀
𝜌𝛽(𝜆)

]︁
− 𝛽2

(︀
tr [𝑊𝑣𝜌𝛽(𝜆)]

)︀2
, (4.44)

Proof. Since the terms in the Hamiltonian are non-commuting, we use Proposition 84 to find the
derivatives of log𝑍𝛽(𝜆). We get

𝜕

𝜕𝜆𝑗
log𝑍𝛽(𝜆) =

1

𝑍𝛽(𝜆)
tr

[︂
−𝛽
2

{︁
𝑒−𝛽𝐻(𝜆),Φ𝐻(𝜆)(𝐸𝑗)

}︁]︂
=

−𝛽
𝑍𝛽(𝜆)

tr

[︂
𝑒−𝛽𝐻(𝜆)

∫︁ ∞

−∞
𝑑𝑡𝑓𝛽(𝑡)𝑒

−𝑖𝐻(𝜆)𝑡 𝐸𝑗 𝑒
𝑖𝐻(𝜆)𝑡

]︂
= −𝛽 tr

[︃
𝐸𝑗
𝑒−𝛽𝐻(𝜆)

𝑍𝛽(𝜆)

]︃
, (4.45)

where the second equality used the definition of the quantum belief propagation operator
Φ𝐻(𝜆)(𝐸𝑗) =

∫︀∞
−∞ 𝑑𝑡𝑓𝛽(𝑡) 𝑒

−𝑖𝐻(𝜆)𝑡 𝐸𝑗 𝑒
𝑖𝐻(𝜆)𝑡 with 𝑓𝛽 as given in Definition 83. The third equality

6In future sections, we often use this characterization in terms of vectors 𝑣 to obtain proper bounds on the
minimum eigenvalue 𝜎min.
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Step 1:
Relating the Hessian to a variance (Section 4.9.1)

Lemma 99, Lemma 100

Warm-up before step 2:
Variance at infinite temperature (Section 4.9.2)

Theorem 102

Step 2:
From global to local variance

Theorem 104, Claim 105

Step 3:
Bounding the effect of local unitaries (Section 4.9.4)

Claim 106, Claim 107, Corollary 108

Step 4:
Reduction to infinite temperature variance (Section 4.9.5)

Claim 109, Theorem 110

Final step:
Putting things together (Section 4.9.6)

Lemma 111

Figure 4-1: Flow of the argument in the proof of Theorem 98.
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used the fact that 𝑒𝑖𝐻(𝜆)𝑡 commutes with 𝑒−𝛽𝐻(𝜆). Similarly, we have

𝜕2

𝜕𝜆𝑘𝜕𝜆𝑗
log𝑍𝛽(𝜆) = −𝛽 tr

[︃
𝐸𝑗 ·

𝜕

𝜕𝜆𝑘

(︃
𝑒−𝛽𝐻(𝜆)

𝑍𝛽(𝜆)

)︃]︃

= −𝛽 tr

[︂
𝐸𝑗 ·

1

𝑍𝛽(𝜆)

𝜕

𝜕𝜆𝑘

(︁
𝑒−𝛽𝐻(𝜆)

)︁]︂
+ 𝛽tr

[︃
𝐸𝑗 ·

𝑒−𝛽𝐻(𝜆)

𝑍𝛽(𝜆)

]︃
· 1

𝑍𝛽(𝜆)

𝜕

𝜕𝜆𝑘
𝑍𝛽(𝜆)

=
𝛽2

2
tr
[︀
𝐸𝑗 ·

{︀
𝜌𝛽(𝜆),Φ𝐻(𝜆)(𝐸𝑘)

}︀]︀
− 𝛽2 tr[𝐸𝑘𝜌𝛽(𝜆)] tr[𝐸𝑗𝜌𝛽(𝜆)]

=
𝛽2

2
tr
[︀{︀
𝐸𝑗 ,Φ𝐻(𝜆)(𝐸𝑘)

}︀
· 𝜌𝛽(𝜆)

]︀
− 𝛽2 tr[𝐸𝑘𝜌𝛽(𝜆)] tr[𝐸𝑗𝜌𝛽(𝜆)].

One can see from this equation that ∇2 log𝑍𝛽(𝐻) is a symmetric real matrix, 7 and hence its
eigenvectors have real entries. Finally, we get

𝑣⊤ ·
(︀
∇2 log𝑍𝛽(𝜆)

)︀
· 𝑣 =

∑︁
𝑗,𝑘

𝑣𝑗𝑣𝑘
𝜕2

𝜕𝜆𝑘𝜕𝜆𝑗
log𝑍𝛽(𝜆) (4.46)

=
𝛽2

2
tr
[︁{︀
𝑊𝑣,Φ𝐻(𝜆)(𝑊𝑣)

}︀
𝜌𝛽(𝜆)

]︁
−
(︀
𝛽tr [𝑊𝑣𝜌𝛽(𝜆)]

)︀2
.

⊓⊔

The statement of Lemma 99 does not make it clear that the Hessian is a variance of a suitable
operator, or even is positive. The following lemma shows how to lower bound the Hessian by a
variance of a quasi-local operator. The intuition for the proof arises by writing the Hessian in a
manner that makes its positivity clear. This in particular, shows that log𝑍𝛽(𝜇) is a convex function
in parameters 𝜇 — we later improve this to being strongly convex.

Lemma 100 (A lower bound on 𝑣⊤ · ∇2 log𝑍𝛽 · 𝑣). For every 𝑣 ∈ R𝑚 and local operator 𝑊𝑣 =∑︀
𝑖 𝑣𝑖𝐸𝑖, define another quasi-local operator ̃︁𝑊𝑣 such that

̃︁𝑊𝑣 =

∫︁ ∞

−∞
𝑓𝛽(𝑡) 𝑒

−𝑖𝐻𝑡 𝑊𝑣 𝑒
𝑖𝐻𝑡𝑑𝑡, (4.47)

where

𝑓𝛽(𝑡) =
2

𝛽𝜋
log

𝑒𝜋|𝑡|/𝛽 + 1

𝑒𝜋|𝑡|/𝛽 − 1
(4.48)

is defined such that 𝑓𝛽(𝑡) scales as 4
𝛽𝜋𝑒

−𝜋|𝑡|/𝛽 for large 𝑡. It holds that

1

2
tr
[︁{︀
𝑊𝑣,Φ𝐻(𝜆)(𝑊𝑣)

}︀
𝜌𝛽(𝜆)

]︁
−
(︀
tr [𝑊𝑣𝜌𝛽(𝜆)]

)︀2
≥ tr

[︁
(̃︁𝑊𝑣)

2𝜌𝛽(𝜆)
]︁
−
(︁
tr
[︁̃︁𝑊𝑣𝜌𝛽(𝜆)

]︁)︁2
(4.49)

7The terms tr[𝐸𝑘𝜌𝛽(𝜆)] and tr[𝐸𝑗𝜌𝛽(𝜆)] are real, being expectations of Hermitian matrices. Moreover,{︀
𝐸𝑗 ,Φ𝐻(𝜆)(𝐸𝑘)

}︀
is a Hermitian operator, being an anti-commutator of two Hermitian operators. Hence

tr
[︀{︀
𝐸𝑗 ,Φ𝐻(𝜆)(𝐸𝑘)

}︀
𝜌𝛽(𝜆)

]︀
is real too.
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This via Lemma 99 implies that 𝑣⊤ ·
(︀
∇2 log𝑍𝛽(𝜆)

)︀
· 𝑣 ≥ 𝛽2Var[̃︁𝑊𝑣]

Remark 101. For the rest of the paper, we are going to fix an arbitrary 𝑣 ∈ R𝑚, in order to avoid
subscripting 𝑊,̃︁𝑊 by 𝑣.

Proof of Lemma 100. Let us start by proving a simpler version of Eq. (4.49), where we only show

1

2
tr
[︁{︀
𝑊,Φ𝐻(𝜆)(𝑊 )

}︀
𝜌𝛽(𝜆)

]︁
−
(︀
tr [𝑊𝜌𝛽(𝜆)]

)︀2 ≥ 0. (4.50)

Since 𝑣 is an arbitrary vector, this shows that, as expected, ∇2 log𝑍𝛽(𝜆) is a positive semidefinite
operator.

Consider the spectral decomposition of the Gibbs state 𝜌𝛽(𝜆): 𝜌𝛽(𝜆) =
∑︀

𝑗 𝑟𝑗(𝜆)|𝑗⟩⟨𝑗|. Then
observe that

1

2
tr
[︁{︀
𝑊,Φ𝐻(𝜆)(𝑊 )

}︀
𝜌𝛽(𝜆)

]︁
−
(︀
tr [𝑊𝜌𝛽(𝜆)]

)︀2 (4.51)

=
1

2

∑︁
𝑗

𝑟𝑗(𝜆)⟨𝑗|{𝑊,Φ𝐻(𝑊 )}|𝑗⟩ −

⎛⎝∑︁
𝑗

𝑟𝑗(𝜆)𝑊𝑗,𝑗

⎞⎠2

=
1

2

∑︁
𝑗,𝑘

𝑟𝑗(𝜆)
(︀
𝑊𝑗,𝑘⟨𝑘|Φ𝐻(𝑊 )|𝑗⟩+ ⟨𝑗|Φ𝐻(𝑊 )|𝑘⟩𝑊𝑘,𝑗

)︀
−

⎛⎝∑︁
𝑗

𝑟𝑗(𝜆)𝑊𝑗,𝑗

⎞⎠2

(1)
=

1

2

∑︁
𝑗,𝑘

𝑟𝑗(𝜆)
(︁
𝑊𝑗,𝑘𝑊𝑘,𝑗𝑓𝛽(ℰ𝑘 − ℰ𝑗) +𝑊𝑗,𝑘𝑊𝑘,𝑗𝑓𝛽(ℰ𝑗 − ℰ𝑘)

)︁
−

⎛⎝∑︁
𝑗

𝑟𝑗(𝜆)𝑊𝑗,𝑗

⎞⎠2

(2)
=
∑︁
𝑗,𝑘

𝑟𝑗(𝜆)|𝑊𝑗,𝑘|2𝑓𝛽(|ℰ𝑗 − ℰ𝑘|)−

⎛⎝∑︁
𝑗

𝑟𝑗(𝜆)𝑊𝑗,𝑗

⎞⎠2

. (4.52)

In equality (1), we use Definition 83 and in equality (2) we use the facts that 𝑊 is Hermitian and
resp𝑓𝛽(𝜔) = 𝑓𝛽(−𝜔). Since 𝑓𝛽(0) = 1 and 𝑓𝛽(𝜔) > 0 for all 𝜔, it is now evident from last equation
that

tr

(︂
1

2
{𝑊,Φ𝐻(𝑊 )}𝜌𝛽

)︂
− tr (𝑊𝜌𝛽)

2 ≥
∑︁
𝑗

𝑟𝑗(𝜆)|𝑊𝑗,𝑗 |2 −

⎛⎝∑︁
𝑗

𝑟𝑗(𝜆)𝑊𝑗,𝑗

⎞⎠2

≥ 0.

We can improve this bound by using the operator ̃︁𝑊 in (4.47). The function 𝑓𝛽(𝑡) in (4.47) is
chosen carefully such that its Fourier transform satisfies 𝑓𝛽(𝜔) = 𝑓𝛽(|𝜔|). Then, we have that

̃︁𝑊 =

∫︁ ∞

−∞
𝑓𝛽(𝑡) 𝑒

−𝑖𝐻𝑡 𝑊 𝑒𝑖𝐻𝑡𝑑𝑡 =
∑︁
𝑗,𝑘

|𝑗⟩⟨𝑘| 𝑊𝑗,𝑘 𝑓𝛽(|ℰ𝑗 − ℰ𝑘|). (4.53)
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Similar to (4.52) we get

tr(̃︁𝑊 2𝜌𝛽(𝜆))− [tr(̃︁𝑊𝜌𝛽(𝜆))]
2 =

∑︁
𝑗,𝑘

𝑟𝑗(𝜆)|𝑊𝑗,𝑘|2𝑓𝛽(|ℰ𝑗 − ℰ𝑘|)2 −

⎛⎝∑︁
𝑗

𝑟𝑗(𝜆)𝑊𝑗,𝑗

⎞⎠2

≤
∑︁
𝑗,𝑘

𝑟𝑗(𝜆)|𝑊𝑗,𝑘|2𝑓𝛽(|ℰ𝑗 − ℰ𝑘|)−

⎛⎝∑︁
𝑗

𝑟𝑗(𝜆)𝑊𝑗,𝑗

⎞⎠2

= tr

(︂{𝑊,Φ𝐻(𝑊 )}
2

𝜌𝛽(𝜆)

)︂
− [tr(𝑊𝜌𝛽(𝜆))]

2, (4.54)

where the inequality is derived from 𝑓𝛽(𝑥)
2 ≤ 𝑓𝛽(𝑥) for arbitrary −∞ < 𝑥 <∞.

⊓⊔

4.9.2 Warm-up before step 2: Variance at infinite temperature

In the previous section, we showed how to give a lower bound on the Hessian of the logarithm of the
partition function. To be precise, for a vector 𝜆 = (𝜆1, . . . , 𝜆𝑚) ∈ R𝑚 with ‖𝜆‖ ≤ 1, Hamiltonian
𝐻(𝜆) =

∑︀
𝑖 𝜆𝑖𝐸𝑖 and 𝜌𝛽(𝜆) = 1

𝑍𝛽(𝜆)
𝑒−𝛽𝐻(𝜆) (where 𝑍𝛽(𝜆) = tr(𝑒−𝛽𝐻(𝜆))), we showed in Lemma 100

how to carefully choose a local operator ̃︁𝑊 such that for every 𝑣, we have

𝑣⊤ ·
(︀
∇2 log𝑍𝛽(𝜆)

)︀
· 𝑣 ≥ 𝛽2Var[̃︁𝑊 ]. (4.55)

In the next few sections, we further prove that the variance of ̃︁𝑊 with respect to 𝜌𝛽(𝜆) can be
bounded from below.

Before looking at how this can be achieved for the highly non-trivial case of finite temperature,
we will look at a simpler case of infinite temperature limit. As we see later, certain elements of the
proof strategy in this case extends to the general case too.

Consider the infinite temperature Gibbs state (i.e., the maximally mixed state) 𝜂 = 1Λ
𝒟Λ

. As-
suming that the locality of 𝑊 , namely 𝑊 is 𝜅-local with 𝜅 = 𝒪(1), the following theorem holds.

Theorem 102. For ̃︁𝑊 as defined in Lemma 100, we have

tr[(̃︁𝑊 )2𝜂]− tr[̃︁𝑊𝜂]2 ≥ Θ(1)

(𝛽 log(𝑚) + 1)2

𝑚∑︁
𝑖=1

𝑣2𝑖 . (4.56)

The intuition behind the theorem is as follows. In the above statement, if ̃︁𝑊 is replaced by 𝑊 ,
then the lower bound is immediate (see Eq. (4.57) below). Similarly, if 𝐻 and 𝑊 were commuting,
then ̃︁𝑊 would be the same as 𝑊 and the statement would follow. In order to show (4.56) for ̃︁𝑊
in general, we expand it in the energy basis of the Hamiltonian and use the locality of 𝑊 to bound
the contribution of cross terms (using Lemma 85). This accounts for the contributions arising due
to non-commutativity of 𝑊 and 𝐻.

Proof of Theorem 102. Recall from Lemma 100 that 𝑊 =
∑︀

𝑖 𝑣𝑖𝐸𝑖. We first note that tr[̃︁𝑊𝜂] =
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tr[𝑊𝜂] = 0. From the definition, we have tr[(̃︁𝑊 )2𝜂] = 1
𝒟Λ

‖(̃︁𝑊 )2‖2𝐹 . To begin with, we observe

‖𝑊‖2𝐹 = 𝒟Λ

𝑚∑︁
𝑖=1

𝑣2𝑖 , (4.57)

which holds since the basis 𝐸𝑖 satisfies ‖𝐸𝑖‖2𝐹 = 𝒟Λ and tr[𝐸𝑖𝐸𝑗 ] = 0 if 𝑖 ̸= 𝑗. Define 𝑃𝐻𝑠 as the
projection onto the energy range (𝑠, 𝑠+ 1] of 𝐻.

𝑃𝐻𝑠 :=
∑︁

𝑗:ℰ𝑗∈(𝑠,𝑠+1]

|𝑗⟩⟨𝑗|. (4.58)

Using the identity
∑︀

𝑠 𝑃
𝐻
𝑠 = 1Λ and the definition of ̃︁𝑊 , let us expand

‖𝑊‖2𝐹 =
∞∑︁

𝑠,𝑠′=−∞
‖𝑃𝐻𝑠′ 𝑊𝑃𝐻𝑠 ‖2𝐹 ,

‖̃︁𝑊‖2𝐹 =
∞∑︁

𝑠,𝑠′=−∞

⃦⃦⃦⃦∫︁ ∞

−∞
𝑑𝑡𝑃𝐻𝑠′ 𝑓𝛽(𝑡)𝑒

−𝑖𝐻𝑡𝑊𝑒𝑖𝐻𝑡𝑃𝐻𝑠

⃦⃦⃦⃦2
𝐹

(4.59)

=
∞∑︁

𝑠,𝑠′=−∞

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

∑︁
𝑗:ℰ𝑗∈(𝑠,𝑠+1]
𝑘:ℰ𝑘∈(𝑠,𝑠+1]

𝑊𝑗,𝑘𝑓𝛽(|ℰ𝑗 − ℰ𝑘|)𝑃𝐻𝑠′ |𝑗⟩⟨𝑘|𝑃𝐻𝑠

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
2

𝐹

. (4.60)

By using the inequality

𝑓𝛽(𝜔) =
tanh(𝛽𝜔/2)

𝛽𝜔/2
≥ 1

𝛽
2 |𝜔|+ 1

,

we have ⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

∑︁
𝑗:ℰ𝑗∈(𝑠,𝑠+1]
𝑘:ℰ𝑘∈(𝑠,𝑠+1]

𝑊𝑗,𝑘𝑓𝛽(|ℰ𝑗 − ℰ𝑘|)𝑃𝐻𝑠′ |𝑗⟩⟨𝑘|𝑃𝐻𝑠

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
2

𝐹

=
∑︁

𝑗:ℰ𝑗∈(𝑠,𝑠+1]

∑︁
𝑘:ℰ𝑗∈(𝑠′,𝑠′+1]

[𝑓𝛽(|ℰ𝑗 − ℰ𝑘|)]2|𝑊𝑗,𝑘|2

≥ 1(︀𝛽
2 (|𝑠− 𝑠′|+ 1) + 1

)︀2 ∑︁
𝑗:ℰ𝑗∈(𝑠,𝑠+1]

∑︁
𝑘:ℰ𝑗∈(𝑠′,𝑠′+1]

|𝑊𝑗,𝑘|2 =
‖𝑃𝐻𝑠′ 𝑊𝑃𝐻𝑠 ‖2𝐹(︀𝛽

2 (|𝑠− 𝑠′|+ 1) + 1
)︀2 . (4.61)

Plugging this lower bound in Eq. (4.60) gives the following lower bound for ‖̃︁𝑊‖2𝐹 :

‖̃︁𝑊‖2𝐹 ≥
∞∑︁

𝑠,𝑠′=−∞

‖𝑃𝐻𝑠′ 𝑊𝑃𝐻𝑠 ‖2𝐹(︀𝛽
2 (|𝑠− 𝑠′|+ 1) + 1

)︀2 =

∞∑︁
𝑠0=−∞

∑︁
𝑠1:

𝑠0+𝑠1
2

∈Z

‖𝑃𝐻(𝑠0+𝑠1)/2𝑊𝑃𝐻(𝑠0−𝑠1)/2‖
2
𝐹(︀𝛽

2 (|𝑠1|+ 1) + 1
)︀2 , (4.62)
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where we have introduced 𝑠0 = 𝑠+ 𝑠′, 𝑠1 = 𝑠− 𝑠′. Let us consider the last expression for a fixed 𝑠0,
introducing a cut-off parameter 𝑠 which we fix eventually:

∑︁
𝑠1:

𝑠0+𝑠1
2

∈Z

‖𝑃𝐻(𝑠0+𝑠1)/2𝑊𝑃𝐻(𝑠0−𝑠1)/2‖
2
𝐹

[𝛽2 (|𝑠1|+ 1) + 1]2

≥ 1(︀𝛽
2 (𝑠+ 1) + 1

)︀2
⎛⎜⎝ ∑︁
𝑠1:

𝑠0+𝑠1
2

∈Z,|𝑠1|≤𝑠

‖𝑃𝐻(𝑠0+2𝑠′1)/2
𝑊𝑃𝐻(𝑠0−2𝑠′1)/2

‖2𝐹

⎞⎟⎠
=

1(︀𝛽
2 (𝑠+ 1) + 1

)︀2
⎛⎜⎝ ∑︁
𝑠1:

𝑠0+𝑠1
2

∈Z

‖𝑃𝐻(𝑠0+𝑠1)/2𝑊𝑃𝐻(𝑠0−𝑠1)/2‖
2
𝐹 −

∑︁
𝑠1:

𝑠0+𝑠1
2

∈Z,|𝑠1|>𝑠

‖𝑃𝐻(𝑠0+𝑠1)/2𝑊𝑃𝐻(𝑠0−𝑠1)/2‖
2
𝐹

⎞⎟⎠ .

(4.63)

By combining the inequalities (4.62) and (4.63), we obtain

‖̃︁𝑊‖2𝐹 ≥ ‖𝑊‖2𝐹(︀𝛽
2 (𝑠+ 1) + 1

)︀2 − 1(︀𝛽
2 (𝑠+ 1) + 1

)︀2 ∞∑︁
𝑠0=−∞

∑︁
𝑠1:

𝑠0+𝑠1
2

∈Z,|𝑠1|>𝑠

‖𝑃𝐻(𝑠0+𝑠1)/2𝑊𝑃𝐻(𝑠0−𝑠1)/2‖
2
𝐹 .

(4.64)

Now, we will estimate the second term in (4.64). Since the subspaces 𝑃𝐻(𝑠0+𝑠1)/2 and 𝑃𝐻(𝑠0−𝑠1)/2 are
sufficiently far apart in energy, we can use the exponential concentration on the spectrum [AKL16]
(as stated in Lemma 85) to obtain the following: for 𝑊 =

∑︀
𝑖 𝑣𝑖𝐸𝑖, we have

‖𝑃𝐻(𝑠0+𝑠1)/2𝑊𝑃𝐻(𝑠0−𝑠1)/2‖ ≤
𝑚∑︁
𝑖=1

𝑣𝑖‖𝑃𝐻(𝑠0+𝑠1)/2𝐸𝑖𝑃
𝐻
(𝑠0−𝑠1)/2‖

≤ 𝐶𝑒−𝜆(|𝑠1|−1−𝜅)
𝑚∑︁
𝑖=1

|𝑣𝑖| ≤ 𝐶𝑚𝑒−𝜆(|𝑠1|−1−𝜅)max
𝑖

|𝑣𝑖|.
(4.65)

where we use the condition that 𝐸𝑖 are tensor product of Pauli operators with weight at most 𝜅,
and the parameters 𝐶 and 𝜆 are 𝒪(1) constants (see Lemma 85 for their explicit forms). Then, the
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second term in (4.64) can be upper-bounded by

∞∑︁
𝑠0=−∞

∑︁
𝑠1:

𝑠0+𝑠1
2

∈Z,|𝑠1|>𝑠

‖𝑃𝐻(𝑠0+𝑠1)/2𝑊𝑃𝐻(𝑠0−𝑠1)/2‖
2
𝐹

(1)

≤
∞∑︁

𝑠0=−∞

∑︁
𝑠1:

𝑠0+𝑠1
2

∈Z,|𝑠1|>𝑠

‖𝑃𝐻(𝑠0+𝑠1)/2𝑊𝑃𝐻(𝑠0−𝑠1)/2‖
2 · ‖𝑃𝐻(𝑠0+𝑠1)/2‖

2
𝐹

(2)

≤
∑︁
|𝑠1|>𝑠

∑︁
𝑠0:

𝑠0+𝑠1
2

∈Z

‖𝑃𝐻(𝑠0+𝑠1)/2‖
2
𝐹 · 𝐶2𝑚2𝑒−2𝜆(|𝑠1|−1−𝜅)max

𝑖
𝑣2𝑖

= 𝒟Λ𝐶
2𝑚2𝑒2𝜆(1+𝜅)max

𝑖
𝑣2𝑖

∑︁
|𝑠1|≥𝑠+1

𝑒−2𝜆|𝑠1|

(3)

≤ 𝒟Λmax
𝑖
𝑣2𝑖
𝐶2𝑚2𝑒2𝜆(𝜅+1)

2𝜆
𝑒−2𝜆𝑠

(4)

≤ 𝒟Λ
𝐶2𝑚2𝑒2𝜆(𝜅+1)

2𝜆
𝑒−2𝜆𝑠

(︃∑︁
𝑖

𝑣2𝑖

)︃
, (4.66)

where inequality (1) follows from Eq. (4.15), (2) follows from Eq. (4.65), (3) follows from Fact 78
and (4) follows from max𝑖 𝑣

2
𝑖 ≤ ∑︀

𝑖 𝑣
2
𝑖 . Therefore, by applying Eq. (4.57) and (4.66) to (4.64), we

arrive at the lower bound as

‖̃︁𝑊‖2𝐹 ≥ 𝒟Λ

[𝛽(𝑠+ 1)/2 + 1]2

(︃
𝑚∑︁
𝑖=1

𝑣2𝑖

)︃(︃
1− 𝐶2𝑚2𝑒2𝜆(𝜅+1)

2𝜆
𝑒−2𝜆𝑠

)︃
. (4.67)

Since 𝜆,𝐶, 𝜅 = 𝒪(1), by choosing 𝑠 = 𝒪(log(𝑚)), we obtain the main inequality (4.56). This
completes the proof. □ ⊓⊔

4.9.3 Step 2: From global to local variance

Having seen how to obtain a lower bound for ̃︁𝑊 at the infinite temperature as in Theorem 102, we
move on to the more challenging task of proving a variance lower bound at finite temperatures.

A main challenge in bounding the variance of the operator ̃︁𝑊 is that even though ̃︁𝑊 is a sum
of quasi-local operators, it acts globally on all the sites and hence, its spectral properties might
scale badly with the system size. To address this issue, we will follow the strategy introduced in
Section 4.6.5 and reviewed in Section 4.3.4 to reduce the problem to the study of a more local
operator. For some 𝑖 ∈ Λ, recall the definition of ̃︁𝑊(𝑖) from the subsection 4.6.5:

̃︁𝑊(𝑖) := ̃︁𝑊 − tr𝑖[̃︁𝑊 ]⊗ 1𝑖

𝑑
(4.68)

The operator ̃︁𝑊(𝑖) includes essentially the terms in ̃︁𝑊 that are supported on the 𝑖th site. We now
show how the variance of the global operator ̃︁𝑊 can be related to the variance of ̃︁𝑊(𝑖).

Remark 103. Instead of working with ̃︁𝑊 , it is more convenient to define a quasi-local operator 𝐴
that is proportional to ̃︁𝑊 − tr[𝜌𝛽̃︁𝑊 ]1. This allows us to express Var[̃︁𝑊 ] in terms of tr[𝐴2𝜌𝛽]. The
exact choice of this operator will be made later, but all the results in this and upcoming sections hold
generally for a (𝜏, 𝑎1, 𝑎2, 𝜁)-quasi-local operator 𝐴 (see Eq. (4.18)) where 𝑎2 = 𝒪(1/𝛽), 𝑎1 = 𝒪(1)
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are constants, 𝜁 = 1, 𝜏 ≤ 1, and tr[𝐴𝜌𝛽] = 0. We note that the quasi-locality of the opeartor ̃︁𝑊 in
terms of the definition 80 is given in Section 4.10.4.

We will interchangeably use the Frobenius norm to write the variance of 𝐴 as

Var[𝐴] = tr(𝐴2𝜌𝛽) = ‖𝐴√𝜌𝛽‖𝐹 .

Using Haar random unitaries, we obtain the integral representation of 𝐴(𝑖) = 𝐴− tr𝑖[𝐴]⊗ 1𝑖
𝑑 as

𝐴(𝑖) = 𝐴− 1

𝑑
[tr𝑖(𝐴)]⊗ 1𝑖 = 𝐴−

∫︁
𝑑𝜇(𝑈𝑖)𝑈

†
𝑖 𝐴𝑈𝑖, (4.69)

where 𝑑𝜇(𝑈𝑖) is the Haar measure for unitary operator 𝑈𝑖 which acts on the 𝑖th site. Using triangle
inequality, we have

‖𝐴(𝑖)
√
𝜌𝛽‖𝐹 ≤ ‖𝐴√𝜌𝛽‖𝐹 +

∫︁
𝑑𝜇(𝑈𝑖)‖𝑈 †

𝑖 𝐴𝑈𝑖
√
𝜌𝛽‖𝐹

= ‖𝐴√𝜌𝛽‖𝐹 +

∫︁
𝑑𝜇(𝑈𝑖)‖𝐴𝑈𝑖√𝜌𝛽‖𝐹 (4.70)

This implies

‖𝐴(𝑖)
√
𝜌𝛽‖2𝐹 ≤

(︁
‖𝐴√𝜌𝛽‖𝐹 +

∫︁
𝑑𝜇(𝑈𝑖)‖𝐴𝑈𝑖√𝜌𝛽‖𝐹

)︁2
(4.71)

≤ 2‖𝐴√𝜌𝛽‖2𝐹 + 2
(︁∫︁

𝑑𝜇(𝑈𝑖)‖𝐴𝑈𝑖√𝜌𝛽‖𝐹
)︁2
. (4.72)

In fact, we need a slightly generalized version of this bound in the forthcoming steps of the
proof. This modified version allows us to include the effect of a further local unitary 𝑈𝑋𝑖 that is
applied to the Gibbs state. Here, 𝑋𝑖 := 𝐵(𝑅, 𝑖) is a ball around the site 𝑖 with a constant radius 𝑅
that we specify later in Section 4.9.5. We skip the proof since it is the same as the above argument.

Theorem 104. Let 𝐴 be a quasi-local operator as in Remark 103 and 𝐴(𝑖) = 𝐴− tr𝑖[𝐴]⊗ 1𝑖
𝑑 defined

as in Section 4.6.5 for some 𝑖 ∈ Λ. Consider local unitaries 𝑈𝑖 and 𝑈𝑋𝑖 acting on site 𝑖 and 𝑋𝑖

respectively, where 𝑋𝑖 is a ball of constant size at site 𝑖 . The following generalization of (4.72)
holds:

‖𝑈 †
𝑋𝑖
𝐴(𝑖)𝑈𝑋𝑖

√
𝜌𝛽‖2𝐹 ≤ 2‖𝐴𝑈𝑋𝑖

√
𝜌𝛽‖2𝐹 + 2

(︁∫︁
𝑑𝜇(𝑈𝑖)‖𝐴𝑈𝑖𝑈𝑋𝑖

√
𝜌𝛽‖𝐹

)︁2
. (4.73)

We now move to another ingredient we need for future steps. Although the operator 𝐴(𝑖) is
mostly localized around the site 𝑖, it is still obtained from a quasi-local operator 𝐴 and hence it is
quasi-local itself. Next claim will approximate 𝐴(𝑖) by a local operator.

Claim 105. Consider 𝐴 which is a (𝜏, 𝑎1, 𝑎2, 𝜁)-quasi-local operator (see Eq. (4.18) and Remark 103)
where 𝑎2 = 𝒪(1/𝛽), 𝑎1 = 𝒪(1) are constants, 𝜁 = 1, and 𝜏 ≤ 1. For any 𝑖 ∈ Λ, there exists an
operator 𝐴𝑋𝑖 supported entirely on 𝑋𝑖, such that

‖𝐴(𝑖) −𝐴𝑋𝑖‖ ≤ 2𝑎1 ·
(︂
1 + 𝑎

− 1
𝜏

2

)︂
·
(︂

4

𝜏2

)︂ 1
𝜏

· 𝑒−
𝑎2
2
(𝑅)𝜏 .
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Proof. Using Eq. (4.18) and the fact that local operators not containing 𝑖 in their support are
removed, we can write

𝐴(𝑖) =
∑︁

𝑘,𝑍⊆Λ:
|𝑍|≤𝑘,𝑍∋𝑖

𝑔𝑘

(︂
𝑎𝑍 − 1

𝑑
[tr𝑖(𝑎𝑍)]⊗ 1𝑖

)︂
,

Define
𝐴𝑋𝑖 =

∑︁
𝑘,𝑍⊆𝑋𝑖:
|𝑍|≤𝑘,𝑍∋𝑖

𝑔𝑘

(︂
𝑎𝑍 − 1

𝑑
[tr𝑖(𝑎𝑍)]⊗ 1𝑖

)︂
.

be the desired approximations of 𝐴(𝑖) by removing all operators that are not contained within 𝑋𝑖.
Observe that

‖𝐴(𝑖) −𝐴𝑋𝑖‖ ≤ 2
∑︁

𝑘,𝑍⊆Λ:
𝑍 ̸⊂𝑋𝑖,|𝑍|≤𝑘,𝑍∋𝑖

𝑔𝑘‖𝑎𝑍‖
(1)

≤ 2
∑︁

𝑘,𝑍⊆Λ:
diam(𝑍)≥𝑅,|𝑍|≤𝑘,𝑍∋𝑖

𝑔𝑘‖𝑎𝑍‖

(2)

≤ 2
∑︁
𝑘≥𝑅

𝑔𝑘

(︃ ∑︁
𝑍:𝑍∋𝑖

‖𝑎𝑍‖
)︃

(3)

≤ 2𝜁
∑︁
𝑘≥𝑅

𝑔𝑘

≤ 2𝜁𝑎1
∑︁
𝑘≥𝑅

𝑒−𝑎2𝑘
𝜏 (4)

≤ 2𝜁𝑎1𝑒
−𝑎2

2
𝑅𝜏
(︁
1 + 𝜏−1[2/(𝑎2𝜏)]

1/𝜏
)︁

≤ 2𝜁𝑎1 ·
(︂
1 + 𝑎

− 1
𝜏

2

)︂
·
(︂
2

𝜏

)︂ 2
𝜏

· 𝑒−
𝑎2
2
(𝑅)𝜏 . (4.74)

For inequality (1), note that since 𝑍 ̸⊂ 𝑋𝑖 and 𝑍 ∋ 𝑖, the diameter of 𝑍 (recall that 𝑍 is a ball)
must be larger than the radius of 𝑋𝑖, which is 𝑅. Inequality (2) holds since 𝑘 ≥ |𝑍| ≥ diam(𝑍),
inequality (3) uses Definition 80 and inequality (4) uses Fact 78. Since 𝜁 = 1 for the given 𝐴, this
completes the proof. ⊓⊔

4.9.4 Step 3: Bounding the effect of local unitaries

Recall that we reduced the problem of bounding the variance of 𝐴 (which as explained in Re-
mark 103) is closely related to our original operator ̃︁𝑊 ) to that of the operators {𝐴(𝑖)}𝑖∈Λ. These
operators are essentially supported on a small number of sites. However, in this process, we intro-
duced other local unitaries that are applied on the state. In order to handle the action of these
unitaries, we will use two claims which show that local unitaries do not make much difference in
the relative behavior of spectra of 𝐴 and 𝐻. To elaborate, consider any local operator 𝑈𝑋 acting
on constant number of sites 𝑋 on the state 𝜌𝛽 . It is expected that the quantum state 𝑈 †

𝑋𝜌𝛽𝑈𝑋 has
“similar" spectral properties as 𝜌𝛽 . So if the eigen-spectrum of the operator 𝐴 is strongly concen-
trated for 𝜌𝛽 , one would expect this behavior to hold even for 𝑈 †

𝑋𝜌𝛽𝑈𝑋 . We make this intuition
rigorous in this section.

We begin this by introducing some key quantities that are used repeatedly in the proof. For
notational simplicity, let

𝐻 ′ := 𝐻 − 1

𝛽
log𝑍𝛽, (4.75)
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Figure 4-2: Plot of the probability distribution tr[Π𝜔𝜌𝛽], where Π𝜔 is the projector onto the eigen-
vectors of 𝐴 with eigenvalue 𝜔. It is assumed that tr[𝐴𝜌𝛽] = 0. For a 𝛾 to be chosen in the proof,
𝑃𝐴𝛾 is the projector onto the subspace of eigenvectors of 𝐴 with eigenvalue between [−𝛾, 𝛾]. A lower
bound on the variance of 𝐴 follows if we can show that for a constant 𝛾, the probability mass in
the colored range is small (see Equation 4.78).

which allows us to write 𝜌𝛽 = 𝑒−𝛽𝐻
′ . As before, we will interchangeably use the Frobenius norm to

write
⟨𝐴2⟩ = tr(𝐴2𝜌𝛽) = ‖𝐴√𝜌𝛽‖𝐹 .

We now define the projection operator 𝑃𝐴𝛾 as follows (see Figure 4-2):

𝑃𝐴𝛾 :=
∑︁

𝜔∈[−𝛾,𝛾]

Π𝜔, (4.76)

where Π𝜔 is the projector onto the eigenspace of 𝐴 with eigenvalue 𝜔. We then define 𝛿𝛾 by

𝛿𝛾 := 1− ‖𝑃𝐴𝛾
√
𝜌𝛽‖2𝐹 . (4.77)

Using 𝛿𝛾 , observe that we can lower bound ⟨𝐴2⟩ as

⟨𝐴2⟩ =
∑︁
𝜔

𝜔2⟨𝜔|𝜌𝛽|𝜔⟩ ≥
∑︁
|𝜔|≥𝛾

𝜔2⟨𝜔|𝜌𝛽|𝜔⟩ ≥ 𝛾2
∑︁
|𝜔|≥𝛾

⟨𝜔|𝜌𝛽|𝜔⟩ ≥ 𝛾2𝛿𝛾 . (4.78)

Let 𝑄𝐴𝛾 = 1− 𝑃𝐴𝛾 , then observe that from Eq. (4.77) that

‖𝑃𝐴𝛾
√
𝜌𝛽 −

√
𝜌𝛽‖2𝐹 = ‖𝑄𝐴𝛾

√
𝜌𝛽‖2𝐹 = 𝛿𝛾 . (4.79)

Claim 106. Let 𝑐1, 𝑐2, 𝜆 be universal constants. Let 𝑋 ⊆ Λ. For every unitary 𝑈𝑋 supported on 𝑋,
we have

‖𝑄𝐴𝛾 𝑈𝑋
√
𝜌𝛽‖2𝐹 ≤ exp

(︀
𝜆|𝑋|

)︀
𝛿

𝑐2
𝑐2+𝛽
𝛾 . (4.80)

Let us see a simple application of the claim. It allows us to control the variance of 𝐴 even after
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local operations are applied to it. More precisely,

‖𝐴𝑈𝑋√𝜌𝛽‖2𝐹 = ‖𝐴𝑃𝐴𝛾 𝑈𝑋
√
𝜌𝛽‖2𝐹 + ‖𝐴(1− 𝑃𝐴𝛾 )𝑈𝑋

√
𝜌𝛽‖2𝐹

≤ 𝛾2 + ‖𝐴‖2 · ‖(1− 𝑃𝐴𝛾 )𝑈𝑋
√
𝜌𝛽‖2𝐹 .

(4.81)

By Claim 106, the expression on the second line is upper bounded by 𝛾2+‖𝐴‖2𝑒Θ(1)|𝑋|𝛿
Θ(1)/𝛽
𝛾 . This

upper bound on ‖𝐴𝑈𝑋√𝜌𝛽‖𝐹 suffices to provide an inverse-polynomial lower bound on the variance
of 𝐴2, since we can lower bound 𝛿𝛾 for an appropriate choice of 𝛾. However we now show how one
can polynomially improve upon this upper bound (thereby the lower bound on variance) using the
following claim. This claim, along the lines of Claim 106, also shows that local unitaries 𝑈𝑋 do not
change the desired expectation values.

Claim 107. Let 𝑋 ⊆ Λ. For every unitary 𝑈𝑋 supported on 𝑋, we have8

⃦⃦
𝐴𝑄𝐴𝛾 𝑈𝑋

√
𝜌𝛽
⃦⃦2
𝐹
≤ 1

𝛾
· exp

(︀
Θ(1) · |𝑋|

)︀
𝛿Θ(1)/𝛽
𝛾 +Θ(1) · |𝑋|6 · ⟨𝐴2⟩. (4.82)

Proof of both the Claims 106, 107 appear in Section 4.10.2. An immediate corollary of this claim
is the following, that improves upon Eq. (4.81).

Corollary 108. Let 𝑋 be a subset of Λ of size |𝑋| = 𝒪(1). For every unitary 𝑈𝑋 supported on 𝑋,
we have

‖𝐴𝑈𝑋√𝜌𝛽‖2𝐹 ≤ 𝛾2 +
𝑒Θ(1)·|𝑋|𝛿

Θ(1)/𝛽
𝛾

𝛾
+Θ(1)|𝑋|6⟨𝐴2⟩. (4.83)

Proof. Similar to Eq. (4.81), we upper bound ‖𝐴𝑈𝑋√𝜌𝛽‖2𝐹 as

‖𝐴𝑈𝑋√𝜌𝛽‖2𝐹 =
⃦⃦
𝐴𝑃𝐴𝛾 𝑈𝑋

√
𝜌𝛽
⃦⃦2
𝐹
+
⃦⃦
𝐴𝑄𝐴𝛾 𝑈𝑋

√
𝜌𝛽
⃦⃦2
𝐹
≤ 𝛾2 +

⃦⃦
𝐴𝑄𝐴𝛾 𝑈𝑋

√
𝜌𝛽
⃦⃦2
𝐹
, (4.84)

since 𝑄𝐴𝛾 = 1− 𝑃𝐴𝛾 . By combining this with Claim 107, the corollary follows. ⊓⊔

4.9.5 Step 4: Reduction to infinite temperature variance

In Section 4.9.3, we reduced the variance of a global operator 𝐴 (which is related to ̃︁𝑊 via Re-
mark 103) to the quasi-local operators {𝐴(𝑖)}𝑖∈Λ. We now argue that there is some 𝑖 such that it
is possible to bound the finite temperature variance of 𝐴(𝑖) in terms of its variance at infinite tem-
perature. This can be done by applying some local rotations given by a unitary 𝑈𝑋𝑖 on the state.
The intuition here is that if rotations are allowed, then the eigenvectors of 𝐴𝑋𝑖 can be rearranged
to yield largest possible variance with 𝜌𝛽 . This turns out to be larger than the variance with 𝜂 the
infinite temperature state. Define the site 𝑖0 as

𝑖0 := argmax
𝑖

‖𝐴(𝑖)
√
𝜂‖𝐹 . (4.85)

8Explicit 𝒪(1) constants that appear in this inequality are made clear in the proof.
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Claim 109. Let 𝜂 be the infinite temperature Gibbs state. There exists a unitary 𝑈𝑋𝑖0
supported

on 𝑋𝑖0 such that

‖𝑈 †
𝑋𝑖0

𝐴(𝑖0)𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹 ≥ 1

2
‖𝐴(𝑖0)

√
𝜂‖𝐹 .

Proof of Claim 109. We first show the existence of a unitary 𝑈𝑋𝑖0
satisfying

‖𝑈 †
𝑋𝑖0

𝐴(𝑖0)𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹 ≥ ‖𝐴(𝑖0)

√
𝜂‖𝐹 − 2‖𝐴𝑋𝑖0

−𝐴(𝑖0)‖. (4.86)

Recall that the notation 𝐴𝑋𝑖 has been defined in Claim 105. For the proof of the above inequality,
we start from the following,

‖𝑈 †
𝑋𝑖0

𝐴(𝑖0)𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹 = ‖𝑈 †

𝑋𝑖0

[︀
(𝐴(𝑖0) −𝐴𝑋𝑖0

) +𝐴𝑋𝑖0

]︀
𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹

≥ ‖𝑈 †
𝑋𝑖0

𝐴𝑋𝑖0
𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹 − ‖𝐴(𝑖0) −𝐴𝑋𝑖0

‖ (4.87)

and lower-bound the norm of ‖𝑈 †
𝑋𝑖0

𝐴𝑋𝑖0
𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹 . For this, define

𝜌𝛽,𝑋 := tr𝑋c(𝜌𝛽), (4.88)

where tr𝑋c is the partial trace operation for the Hilbert space on 𝑋c. We define the spectral
decomposition of 𝐴𝑋𝑖0

as

𝐴𝑋𝑖0
=

𝒟𝑋𝑖0∑︁
𝑠=1

𝜀𝑠|𝜀𝑠⟩⟨𝜀𝑠|, (4.89)

where 𝜀𝑠 is ordered as |𝜀1| ≥ |𝜀2| ≥ |𝜀3| ≥ · · · and 𝒟𝑋𝑖0
is the dimension of the Hilbert space on 𝑋𝑖0 .

Additionally, define the spectral decomposition of 𝜌𝛽,𝑋𝑖0
as

𝜌𝛽,𝑋𝑖0
=

𝒟𝑋𝑖0∑︁
𝑠=1

𝑝𝑠|𝜇𝑠⟩⟨𝜇𝑠|, (4.90)

where 𝑝𝑠 is ordered as 𝑝1 ≥ 𝑝2 ≥ 𝑝3 ≥ · · · and |𝜇𝑠⟩ is the 𝑠th eigenstate of 𝜌𝛽,𝑋𝑖0
. We now choose

the unitary operator 𝑈𝑋𝑖0
such that

𝑈𝑋𝑖0
|𝜇𝑠⟩ = |𝜀𝑠⟩ for 𝑠 = 1, 2, . . . ,𝒟𝑋𝑖0

(4.91)

We then obtain

𝑈𝑋𝑖0
𝜌𝛽,𝑋𝑖0

𝑈 †
𝑋𝑖0

=

𝒟𝑋𝑖0∑︁
𝑠=1

𝑝𝑠|𝜀𝑠⟩⟨𝜀𝑠|. (4.92)
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This implies

‖𝑈 †
𝑋𝑖0

𝐴𝑋𝑖0
𝑈𝑋𝑖0

√
𝜌𝛽‖2𝐹 = tr[𝑈 †

𝑋𝑖0
𝐴2
𝑋𝑖0

𝑈𝑋𝑖0
𝜌𝛽]

= tr[𝐴2
𝑋𝑖0

𝑈𝑋𝑖0
𝜌𝛽𝑈

†
𝑋𝑖0

] = tr𝑋𝑖0
[𝐴2

𝑋𝑖0
𝑈𝑋𝑖0

𝜌𝛽,𝑋𝑖0
𝑈 †
𝑋𝑖0

]

=

𝒟𝑋𝑖0∑︁
𝑠=1

𝑝𝑠𝜀
2
𝑠 ≥

1

𝒟𝑋𝑖0

𝒟𝑋𝑖0∑︁
𝑠=1

𝜀2𝑠 = ‖𝐴𝑋𝑖0

√
𝜂‖2𝐹 , (4.93)

where the inequality used the fact that 𝑝𝑠, 𝜀𝑠 are given in descending order. Then, the minimization
problem of

∑︀
𝑠 𝑝𝑠𝜀𝑠 for 𝑝𝑠𝑠 with the constraint 𝑝1 ≥ 𝑝2 ≥ 𝑝3 ≥ · · · has a solution of 𝑝1 = 𝑝2 = · · · =

𝑝𝒟𝑋𝑖0
. Using the lower bound

‖𝐴𝑋𝑖0

√
𝜂‖𝐹 = ‖(𝐴𝑋𝑖0

−𝐴(𝑖0) +𝐴(𝑖0))
√
𝜂‖𝐹 ≥ ‖𝐴(𝑖0)

√
𝜂‖𝐹 − ‖𝐴𝑋𝑖0

−𝐴(𝑖0)‖, (4.94)

we can reduce inequality (4.93) to

‖𝑈 †
𝑋𝑖0

𝐴𝑋𝑖0
𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹 ≥ ‖𝐴(𝑖0)

√
𝜂‖𝐹 − ‖𝐴𝑋𝑖0

−𝐴(𝑖0)‖. (4.95)

By combining the inequalities (4.87) and (4.95), we obtain the inequality (4.86) as follows:

‖𝑈 †
𝑋𝑖0

𝐴(𝑖0)𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹 ≥ ‖𝑈 †

𝑋𝑖0
𝐴𝑋𝑖0

𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹 − ‖𝐴(𝑖0) −𝐴𝑋𝑖0

‖
≥ ‖𝐴(𝑖0)

√
𝜂‖𝐹 − 2‖𝐴(𝑖0) −𝐴𝑋𝑖0

‖ ,

To arrive at the final bound we use Claim 105. Fix

𝑅 =

⎡⎢⎢⎢⎢⎢⎢
⎛⎜⎜⎝ 2

𝑎2
log

8 · 4 1
𝜏 · 𝑎1 ·

(︂
1 + 𝑎

− 1
𝜏

2

)︂
𝜏

2
𝜏 ‖𝐴(𝑖0)

√
𝜂‖𝐹

⎞⎟⎟⎠
1
𝜏

⎤⎥⎥⎥⎥⎥⎥
in Claim 105. We get

‖𝐴(𝑖0) −𝐴𝑋𝑖0
‖ ≤ 1

4
‖𝐴(𝑖0)

√
𝜂‖𝐹 (4.96)

Substituting 𝑎2 = 𝒪(1/𝛽), 𝑎1 = 𝒪(1), 𝜏 = 𝒪(1), we find that we can ensure the condition (4.96) for

𝑅 = diam(𝑋𝑖0) =

(︂
𝛽 log

(︂
1

‖𝐴(𝑖0)
√
𝜂‖𝐹

)︂)︂Θ(1)

. (4.97)

⊓⊔

The previous claim demonstrates that by applying local unitaries, the finite temperature variance
of 𝐴(𝑖0) can be related to ‖𝐴(𝑖0)

√
𝜂‖𝐹 . Here, we use the discussion in Section 4.9.3 and Section 4.9.4

to prove that the rotated local variance ‖𝑈 †
𝑋𝑖0

𝐴(𝑖0)𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹 in Claim 109 is close to the variance

of 𝐴(𝑖) and hence, can be related to the variance of the global operator 𝐴. By establishing this, we
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can obtain a lower bound on the variance of 𝐴 (an in turn ̃︁𝑊 ) in terms of the infinite temperature
variance max𝑖∈Λ ‖𝐴(𝑖)

√
𝜂‖𝐹 . This is stated in the following theorem:

Theorem 110. Let 𝛽 > 0, 𝐻 be a 𝜅-local Hamiltonian on the lattice Λ and 𝜌𝛽 = 𝑒−𝛽𝐻

tr(𝑒−𝛽𝐻)
. Let 𝐴 be

a (𝜏, 𝑎1, 𝑎2, 𝜁)-quasi-local operator (see Eq. (4.18) and Remark 103) where 𝑎2 = 𝒪(1/𝛽), 𝑎1 = 𝒪(1)
are constants and we assume 𝜁 = 1, 𝜏 ≤ 1 and tr[𝐴𝜌𝛽] = 0. We have

⟨𝐴2⟩ = tr(𝐴2𝜌𝛽) ≥
(︂
max
𝑖∈Λ

tr[𝐴2
(𝑖)𝜂]

)︂𝛽Θ(1)

.

We remark that the theorem statement above hides several terms that depend on the lattice,
such as the lattice dimension, the degree of the graph and the locality of Hamiltonian (which we
have fixed to be a constant). Additionally, the assumptions 𝑎2 = 𝒪(1/𝛽), 𝑎1 = 𝒪(1) are suitably
made for the later application of this bound in Section 4.9.6, but we note that this theorem also
holds for other choices of 𝑎1, 𝑎2, with small modifications to the proof.

Proof. Let 𝑈𝑋𝑖0
be the unitary as chosen in Claim 109. Using Theorem 104, we obtain the following

upper bound for 𝑈 †
𝑋𝑖0

𝐴(𝑖0)𝑈𝑋𝑖0

‖𝑈 †
𝑋𝑖0

𝐴(𝑖0)𝑈𝑋𝑖0

√
𝜌𝛽‖2𝐹 ≤

(︁
‖𝐴𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹 +

∫︁
𝑑𝜇(𝑈𝑖0)‖𝐴𝑈𝑖0𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹

)︁2
≤ 2‖𝐴𝑈𝑋𝑖0

√
𝜌𝛽‖2𝐹 + 2

∫︁
𝑑𝜇(𝑈𝑖0)‖𝐴𝑈𝑖0𝑈𝑋𝑖0

√
𝜌𝛽‖2𝐹 .

Now, we can use Corollary 108 to upper bound ‖𝐴𝑈𝑋𝑖0

√
𝜌𝛽‖2𝐹 and ‖𝐴𝑈𝑖0𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹 in the right

hand side, which yields

‖𝑈 †
𝑋𝑖0

𝐴(𝑖0)𝑈𝑋𝑖0

√
𝜌𝛽‖2𝐹 ≤ 4𝛾2 +

𝑒Θ(1)|𝑋𝑖0
|𝛿

Θ(1)/𝛽
𝛾

𝛾
+Θ(1)|𝑋𝑖0 |6⟨𝐴2⟩. (4.98)

Using Claim 109, we have

‖𝑈 †
𝑋𝑖0

𝐴(𝑖0)𝑈𝑋𝑖0

√
𝜌𝛽‖𝐹 ≥ 1

2
‖𝐴(𝑖0)

√
𝜂‖𝐹 . (4.99)

Putting together the upper bound in Eq. (4.98) and the lower bound in Eq. (4.99), we have

4𝛾2 +
𝑒Θ(1)|𝑋𝑖0

|𝛿
Θ(1)/𝛽
𝛾

𝛾
+Θ(1)|𝑋𝑖0 |6⟨𝐴2⟩ ≥ 1

4
‖𝐴(𝑖0)

√
𝜂‖2𝐹 . (4.100)

By choosing as 𝛾2 = ‖𝐴(𝑖0)
√
𝜂‖2𝐹 /32 =: 𝛾20 , we obtain

𝑒Θ(1)|𝑋𝑖0
|𝛿

Θ(1)/𝛽
𝛾0

𝛾0
+Θ(1)|𝑋𝑖0 |6⟨𝐴2⟩ ≥ 𝛾20 . (4.101)

This inequality implies that either

𝛿𝛾0 ≥
(︁
𝛾30𝑒

−Θ(1)|𝑋𝑖0
|
)︁𝛽·Θ(1)
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or

⟨𝐴2⟩ ≥ Θ(1)𝛾20
|𝑋𝑖0 |6

.

Combining with Eq. (4.78), we conclude that

⟨𝐴2⟩ ≥ min
{︁
𝛾20 ·

(︁
𝛾30𝑒

−Θ(1)|𝑋𝑖0
|
)︁𝛽·Θ(1)

,
Θ(1)𝛾20
|𝑋𝑖0 |6

}︁
.

Eq. (4.97) ensures that

|𝑋𝑖0 | = Θ(1)𝑅𝐷 = 𝛽Θ(1) log
(︁ 1

‖𝐴(𝑖0)
√
𝜂‖𝐹

)︁Θ(1)
,

where we have used the assumption that lattice dimension 𝐷 is Θ(1). Plugging in this expression
for |𝑋𝑖0 | with the choice of 𝛾0, we find

tr(𝐴2𝜌𝛽) = ⟨𝐴2⟩ ≥ min
{︁
‖𝐴(𝑖0)

√
𝜂‖𝛽·Θ(1)

𝐹 · 𝑒−𝛽Θ(1)|𝑋𝑖0
|,
Θ(1)‖𝐴(𝑖0)

√
𝜂‖Θ(1)

𝐹

|𝑋𝑖0 |6
}︁

≥ min
{︁
‖𝐴(𝑖0)

√
𝜂‖𝛽Θ(1)

𝐹 ,
Θ(1)‖𝐴(𝑖0)

√
𝜂‖Θ(1)

𝐹

𝛽Θ(1) log( 1
‖𝐴(𝑖0)

√
𝜂‖𝐹 )

Θ(1)

}︁

≥ min
{︁
‖𝐴(𝑖0)

√
𝜂‖𝛽Θ(1)

𝐹 ,
Θ(1)‖𝐴(𝑖0)

√
𝜂‖Θ(1)

𝐹

𝛽Θ(1)

}︁
≥ ‖𝐴(𝑖0)

√
𝜂‖𝛽Θ(1)

𝐹 .

Since we chose 𝑖0 in Eq. (4.85) such that ‖𝐴(𝑖0)
√
𝜂‖𝐹 = max𝑖 ‖𝐴(𝑖)

√
𝜂‖𝐹 , this proves the theorem.

⊓⊔

4.9.6 Final step: Putting things together

We are now ready to apply the results of the past steps to prove Theorem 98. The bound in
Theorem 110 in the previous section is stated for a general quasi-local observable 𝐴. As discussed
in Remark 103, a special choice of 𝐴 is when it is proportional to ̃︁𝑊 − tr[𝜌𝛽̃︁𝑊 ]1 where recall
that for an arbitrary 𝑣 ∈ R𝑚, 𝑊 =

∑︀
𝑖 𝑣𝑖𝐸𝑖 and ̃︁𝑊 are the operators defined in Lemma 100. In

Section 4.10.4, we show that̃︁𝑊 is a
(︀
1/𝐷,𝒪(1),𝒪(1/𝛽), 𝑐*𝛽

2𝐷+1 (max𝑖∈Λ |𝑣𝑖|)
)︀
-quasi-local operator,

for 𝑐* = 𝒪(1). Thus, the following operator

𝐴* =
𝛽−2𝐷−1

𝑐*max𝑖∈Λ |𝑣𝑖|
(̃︁𝑊 − tr[𝜌𝛽̃︁𝑊 ]1),

is (𝒪(1),𝒪(1),𝒪(1/𝛽), 1)-quasi-local and satisfies tr[𝐴*𝜌𝛽] = 0. We now apply Theorem 110 to
the operator 𝐴* to prove Theorem 98. We need to estimate max𝑖 tr[𝐴

*2
(𝑖)𝜂]. Consider the following

equality obtained from the definition of 𝐴*:

max
𝑖∈Λ

tr[(𝐴*
(𝑖))

2𝜂] =
𝛽−4𝐷−2

𝑐2* (max𝑖∈Λ |𝑣𝑖|)2
(︂
max
𝑖∈Λ

tr[(̃︁𝑊(𝑖))
2𝜂]

)︂
.
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The following lemma is shown in Section 4.10.5.

Lemma 111. It holds that

max
𝑖∈Λ

(tr[(̃︁𝑊(𝑖))
2𝜂]) =

Θ(1)

(𝛽 log(𝛽) + 1)2𝐷+2

(︂
max
𝑖∈Λ

𝑣2𝑖

)︂
.

This implies

max
𝑖∈Λ

tr[(𝐴*
(𝑖))

2𝜂] =
Θ(1)

𝛽4𝐷+2 (𝛽 log(𝛽) + 1)2𝐷+2 (max𝑖∈Λ |𝑣𝑖|)2
(︂
max
𝑖∈Λ

𝑣2𝑖

)︂
=

1

𝛽Θ(1)
.

Using this lower bound in Theorem 110, we find

⟨(̃︁𝑊 )2⟩ −
(︁
⟨̃︁𝑊 ⟩

)︁2
= 𝑐2*𝛽

4𝐷+2

(︂
max
𝑖∈Λ

|𝑣𝑖|
)︂2 (︁

⟨(𝐴*)2⟩ − (⟨𝐴*⟩)2
)︁

= 𝛽Θ(1)

(︂
max
𝑖∈Λ

|𝑣𝑖|
)︂2

·
(︂
max
𝑖

tr[(𝐴*
(𝑖))

2𝜂]

)︂𝛽Θ(1)

= 𝛽Θ(1) ·
(︂

1

𝛽Θ(1)

)︂𝛽Θ(1)

·
(︂
max
𝑖∈Λ

|𝑣𝑖|
)︂2

(1)
= 𝛽Θ(1) · 𝑒−𝛽Θ(1)

(︂
max
𝑖∈Λ

|𝑣𝑖|
)︂2

≥ 𝛽Θ(1) · 𝑒
−𝛽Θ(1)

𝑚

(︃∑︁
𝑖

𝑣2𝑖

)︃
,

where we used 𝛽−Θ(1) ≥ 𝑒−Θ(𝛽) in (1). Putting together the bound above with Eq. (4.55), we find
that for every 𝑣 ∈ R𝑚,

𝑣⊤ ·
(︀
∇2 log𝑍𝛽(𝜆)

)︀
· 𝑣 ≥ 𝛽2Var[̃︁𝑊 ] ≥ 𝛽Θ(1) · 𝑒

−𝛽Θ(1)

𝑚

𝑚∑︁
𝑖=1

𝑣2𝑖 .

This establishes Theorem 98.

4.10 Deferred proofs

4.10.1 Fourier transform of tanh(𝛽𝜔/2)/(𝛽𝜔/2)

We here derive the Fourier transform of

𝑓𝛽(𝜔) =
tanh(𝛽𝜔/2)

𝛽𝜔/2
,

which is

𝑓𝛽(𝑡) :=
1

2𝜋

∫︁ ∞

−∞
𝑒𝑖𝜔𝑡𝑓𝛽(𝜔)𝑑𝜔.

For the calculation of the Fourier transform, we first consider the case of 𝑡 > 0. By defining 𝐶+
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Re(!)

Im(!)

(a) Integral path 𝐶+ of 𝜔 for 𝑡 > 0

Re(!)

Im(!)

(b) Integral path 𝐶− of 𝜔 for 𝑡 < 0

Figure 4-3: Cauchy’s integral theorem for the calculation of the Fourier transform.

as a integral path as in Fig. 4-3 (a), we obtain

1

2𝜋

∫︁ ∞

−∞
𝑒𝑖𝜔𝑡𝑓𝛽(𝜔)𝑑𝜔 =

1

2𝜋

∫︁
𝐶+

𝑒𝑖𝜔𝑡𝑓𝛽(𝜔)𝑑𝜔

= 𝑖
∞∑︁
𝑚=0

Res𝜔=𝑖𝜋+2𝑖𝑚𝜋[𝑒
𝑖𝜔𝑡𝑓𝛽(𝜔)]. (4.102)

Note that the singular points of [𝑒𝑖𝜔𝑡𝑓𝛽(𝜔)] are given by 𝛽𝜔 = 𝑖𝜋(2𝑚+1) with 𝑚 integers. We can
calculate the residue as

Res𝛽𝜔=𝑖𝜋+2𝑖𝑚𝜋[𝑒
𝑖𝜔𝑡𝑓𝛽(𝜔)] =

4𝑒−(2𝑚+1)𝜋𝑡/𝛽

𝛽𝜋

−𝑖
2𝑚+ 1

(4.103)

We thus obtain

𝑓𝛽(𝑡) =
1

2𝜋

∫︁ ∞

−∞
𝑒𝑖𝜔𝑡𝑓𝛽(𝜔)𝑑𝜔 =

4

𝛽𝜋

∞∑︁
𝑚=0

𝑒−(2𝑚+1)𝜋𝑡/𝛽

2𝑚+ 1
. (4.104)

for 𝑡 > 0.

We can perform the same calculation for 𝑡 < 0. In this case, we define 𝐶− as a integral path as
in Fig. 4-3 (b), and obtain

𝑓𝛽(𝑡) =
1

2𝜋

∫︁
𝐶−

𝑒𝑖𝜔𝑡𝑓𝛽(𝜔)𝑑𝜔 = −𝑖
∞∑︁
𝑚=0

Res𝜔=−𝑖𝜋−2𝑖𝑚𝜋[𝑒
𝑖𝜔𝑡𝑓𝛽(𝜔)]. (4.105)

By using

Res𝜔=−𝑖𝜋−2𝑖𝑚𝜋[𝑒
𝑖𝜔𝑡𝑓𝛽(𝜔)] =

4𝑒(2𝑚+1)𝜋𝑡/𝛽

𝛽𝜋

𝑖

2𝑚+ 1
, (4.106)
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we have

𝑓𝛽(𝑡) =
1

2𝜋

∫︁ ∞

−∞
𝑒𝑖𝜔𝑡𝑓𝛽(𝜔)𝑑𝜔 =

4

𝛽𝜋

∞∑︁
𝑚=0

𝑒(2𝑚+1)𝜋𝑡/𝛽

2𝑚+ 1
. (4.107)

for 𝑡 < 0. By combining the above expressions for 𝑓𝛽(𝑡), we arrive at

𝑓𝛽(𝑡) =
4

𝛽𝜋

∞∑︁
𝑚=0

𝑒−(2𝑚+1)𝜋|𝑡|/𝛽

2𝑚+ 1
. (4.108)

The summation is calculated as
∞∑︁
𝑚=0

𝑒−(2𝑚+1)𝑥

2𝑚+ 1
=

∫︁ ∞

𝑥

∞∑︁
𝑚=0

𝑒−(2𝑚+1)𝑥′𝑑𝑥′ =

∫︁ ∞

𝑥

1

𝑒𝑥′ − 𝑒−𝑥′
𝑑𝑥′ =

1

2
log

𝑒𝑥 + 1

𝑒𝑥 − 1
(4.109)

for 𝑥 > 0, which yields

𝑓𝛽(𝑡) =
2

𝛽𝜋
log

𝑒𝜋|𝑡|/𝛽 + 1

𝑒𝜋|𝑡|/𝛽 − 1
. (4.110)

Since

log
𝑒𝜋|𝑡|/𝛽 + 1

𝑒𝜋|𝑡|/𝛽 − 1
≤ 2

𝑒𝜋|𝑡|/𝛽 − 1
,

𝑓𝛽(𝑡) shows an exponential decay in |𝑡|.

4.10.2 Proof of Claims 106 and 107

Proof of Claim 106. Recall that the goal is to show that for every 𝑋 ⊆ Λ and arbitrary unitaries
𝑈𝑋 ,

‖𝑄𝐴𝛾 𝑈𝑋
√
𝜌𝛽‖2𝐹 ≤ 𝑐1𝑒

𝜆|𝑋|𝛿
𝑐2

𝑐2+𝛽
𝛾 , (4.111)

where 𝑄𝐴𝛾 = 1− 𝑃𝐴𝛾 and 𝑃𝐴𝛾 was defined in Eq. (4.76) and 𝐻 ′ := 𝐻 − 1
𝛽 log𝑍𝛽, which allows us to

write 𝜌𝛽 = 𝑒−𝛽𝐻
′ . To prove this inequality, we start from the following expression:

‖𝑄𝐴𝛾 𝑈𝑋
√
𝜌𝛽‖2𝐹 =

⃦⃦⃦⃦
⃦∑︁
𝑚∈Z

𝑄𝐴𝛾 𝑈𝑋𝑃
𝐻′
𝑚

√
𝜌𝛽

⃦⃦⃦⃦
⃦
2

𝐹

=
∑︁
𝑚∈Z

⃦⃦⃦
𝑄𝐴𝛾 𝑈𝑋𝑃

𝐻′
𝑚

√
𝜌𝛽

⃦⃦⃦2
𝐹

(4.112)

with

𝑃𝐻
′

𝑚 :=
∑︁

𝑗:ℰ𝑗∈(𝑚,𝑚+1]

|𝑗⟩⟨𝑗|, (4.113)

where |𝑗⟩ is the eigenvector of the Hamiltonian 𝐻 ′ with ℰ𝑗 the corresponding eigenvalue. Note that∑︀
𝑚∈Z 𝑃

𝐻′
𝑚 = 1 and we have 𝑃𝐻′

𝑚 = 0 for 𝑚 /∈ [−‖𝐻 ′‖, ‖𝐻 ′‖]. For some Δ ∈ N which we pick later,
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we now decompose
⃦⃦⃦
𝑄𝐴𝛾 𝑈𝑋𝑃

𝐻′
𝑚

√
𝜌𝛽

⃦⃦⃦2
𝐹

as a sum of the following quantities

⃦⃦⃦
𝑄𝐴𝛾 𝑈𝑋𝑃

𝐻′
𝑚

√
𝜌𝛽

⃦⃦⃦2
𝐹
=
⃦⃦⃦
𝑄𝐴𝛾
(︀
𝑃𝐻

′
>𝑚+Δ + 𝑃𝐻

′
<𝑚−Δ + 𝑃𝐻

′

[𝑚−Δ,𝑚+Δ]

)︀
𝑈𝑋𝑃

𝐻′
𝑚

√
𝜌𝛽

⃦⃦⃦2
𝐹
, (4.114)

where

𝑃𝐻
′

>𝑚+Δ :=
∑︁

𝑚′>𝑚+Δ

𝑃𝐻
′

𝑚′ , 𝑃𝐻
′

<𝑚+Δ :=
∑︁

𝑚′<𝑚+Δ

𝑃𝐻
′

𝑚′ , 𝑃𝐻
′

[𝑚−Δ,𝑚+Δ] :=
∑︁

𝑚−Δ≤𝑚′≤𝑚+Δ

𝑃𝐻
′

𝑚′ . (4.115)

Summing over all 𝑚 ∈ Z in Eq. (4.114) and using Eq. (4.112) followed by the triangle inequality
gives us the following inequality

‖𝑄𝐴𝛾 𝑈𝑋
√
𝜌𝛽‖2𝐹

≤ 2
∑︁
𝑚∈Z

⃦⃦⃦
𝑄𝐴𝛾 𝑃

𝐻′

[𝑚−Δ,𝑚+Δ]𝑈𝑋𝑃
𝐻′
𝑚

√
𝜌𝛽

⃦⃦⃦2
𝐹⏟  ⏞  

:=(1)

+2
∑︁
𝑚∈Z

⃦⃦⃦
𝑄𝐴𝛾
(︀
𝑃𝐻

′
>𝑚+Δ + 𝑃𝐻

′
<𝑚−Δ

)︀
𝑈𝑋𝑃

𝐻′
𝑚

√
𝜌𝛽

⃦⃦⃦2
𝐹⏟  ⏞  

:=(2)

. (4.116)

We first bound (1) in Eq. (4.116). Note that for every 𝑚,⃦⃦⃦
𝑄𝐴𝛾 𝑃

𝐻′

[𝑚−Δ,𝑚+Δ]𝑈𝑋𝑃
𝐻′
𝑚

√
𝜌𝛽

⃦⃦⃦2
𝐹
≤ ‖𝑃𝐻′

𝑚
√
𝜌𝛽‖2 ·

⃦⃦⃦
𝑄𝐴𝛾 𝑃

𝐻′

[𝑚−Δ,𝑚+Δ]

⃦⃦⃦2
𝐹

≤ 𝑒−𝛽𝑚
⃦⃦⃦
𝑄𝐴𝛾 𝑃

𝐻′

[𝑚−Δ,𝑚+Δ]

⃦⃦⃦2
𝐹
,

(4.117)

where the first inequality used Eq. (4.15). The expression in the last line can be upper bounded as

𝑒−𝛽𝑚
⃦⃦⃦
𝑄𝐴𝛾 𝑃

𝐻′

[𝑚−Δ,𝑚+Δ]

⃦⃦⃦2
𝐹
= 𝑒−𝛽𝑚tr

[︁
𝑄𝐴𝛾 𝑃

𝐻′

[𝑚−Δ,𝑚+Δ]

]︁
≤ 𝑒−𝛽𝑚𝑒𝛽(𝑚+Δ+1)tr

[︁
𝑄𝐴𝛾 𝑃

𝐻′

[𝑚−Δ,𝑚+Δ]𝜌𝛽𝑃
𝐻′

[𝑚−Δ,𝑚+Δ]

]︁
= 𝑒𝛽(Δ+1)

⃦⃦⃦
𝑄𝐴𝛾 𝑃

𝐻′

[𝑚−Δ,𝑚+Δ]
√
𝜌𝛽

⃦⃦⃦2
𝐹
.

where the inequality follows from

𝑒−𝛽(𝑚+Δ+1)𝑃𝐻
′

[𝑚−Δ,𝑚+Δ] ⪯ 𝑃𝐻
′

[𝑚−Δ,𝑚+Δ]𝜌𝛽𝑃
𝐻′

[𝑚−Δ,𝑚+Δ].

Thus we conclude, from Equation (4.117), that⃦⃦⃦
𝑄𝐴𝛾 𝑃

𝐻′

[𝑚−Δ,𝑚+Δ]𝑈𝑋𝑃
𝐻′
𝑚

√
𝜌𝛽

⃦⃦⃦2
𝐹
≤ 𝑒𝛽(Δ+1)

⃦⃦⃦
𝑄𝐴𝛾 𝑃

𝐻′

[𝑚−Δ,𝑚+Δ]
√
𝜌𝛽

⃦⃦⃦2
𝐹

= 𝑒𝛽(Δ+1)
∑︁

𝑚′∈[𝑚−Δ,𝑚+Δ]

⃦⃦⃦
𝑄𝐴𝛾 𝑃

𝐻′
𝑚′

√
𝜌𝛽

⃦⃦⃦2
𝐹
.
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So the first term (1) in Eq. (4.116) can be bounded by∑︁
𝑚∈Z

⃦⃦⃦
𝑄𝐴𝛾 𝑃

𝐻′

[𝑚−Δ,𝑚+Δ]𝑈𝑋𝑃
𝐻′
𝑚

√
𝜌𝛽

⃦⃦⃦2
𝐹
≤ 𝑒𝛽(Δ+1)

∑︁
𝑚∈Z

∑︁
𝑚′∈[𝑚−Δ,𝑚+Δ]

⃦⃦⃦
𝑄𝐴𝛾 𝑃

𝐻′
𝑚′

√
𝜌𝛽

⃦⃦⃦2
𝐹

(1)
= 𝑒𝛽(Δ+1) · (2Δ + 1)

∑︁
𝑚′∈Z

⃦⃦⃦
𝑄𝐴𝛾 𝑃

𝐻′
𝑚′

√
𝜌𝛽

⃦⃦⃦2
𝐹

= (2Δ + 1)𝑒𝛽(Δ+1)
⃦⃦
𝑄𝐴𝛾

√
𝜌𝛽
⃦⃦2
𝐹
= (2Δ + 1)𝑒𝛽(Δ+1)𝛿𝛾 , (4.118)

where in (1) we use the fact that each 𝑚′ appears (2Δ + 1) times in the summation∑︀
𝑚∈Z

∑︀
𝑚′∈[𝑚−Δ,𝑚+Δ].

We now move on to upper bound (2) in Eq. (4.116) as follows. We have⃦⃦⃦
𝑄𝐴𝛾
(︀
𝑃𝐻

′
>𝑚+Δ + 𝑃𝐻

′
<𝑚−Δ

)︀
𝑈𝑋𝑃

𝐻′
𝑚

√
𝜌𝛽

⃦⃦⃦2
𝐹
≤
⃦⃦⃦(︀
𝑃𝐻

′
>𝑚+Δ + 𝑃𝐻

′
<𝑚−Δ

)︀
𝑈𝑋𝑃

𝐻′
𝑚

⃦⃦⃦2
· ‖𝑃𝐻′

𝑚
√
𝜌𝛽‖2𝐹 , (4.119)

where we use ‖𝑄𝐴𝛾 ‖ ≤ 1. Using Lemma 85, we obtain⃦⃦⃦(︀
𝑃𝐻

′
>𝑚+Δ + 𝑃𝐻

′
<𝑚−Δ

)︀
𝑈𝑋𝑃

𝐻′
𝑚

⃦⃦⃦
≤ 𝐶𝑒−𝜆(Δ−|𝑋|), (4.120)

where 𝐶 and 𝜆 are universal constants. Plugging Eq. (4.120) into Eq. (4.119), we get⃦⃦⃦
𝑄𝐴𝛾
(︀
𝑃𝐻

′
>𝑚+Δ + 𝑃𝐻

′
<𝑚−Δ

)︀
𝑈𝑋𝑃

𝐻′
𝑚

√
𝜌𝛽

⃦⃦⃦2
𝐹
≤ 𝐶2𝑒−2𝜆(Δ−|𝑋|)‖𝑃𝐻′

𝑚
√
𝜌𝛽‖2𝐹 . (4.121)

With this, we can bound (2) in Eq. (4.116) by∑︁
𝑚∈Z

⃦⃦⃦
𝑄𝐴𝛾
(︀
𝑃𝐻

′
>𝑚+Δ + 𝑃𝐻

′
<𝑚−Δ

)︀
𝑈𝑋𝑃

𝐻′
𝑚

√
𝜌𝛽

⃦⃦⃦2
𝐹
≤
∑︁
𝑚∈Z

𝐶2𝑒−2𝜆(Δ−|𝑋|)‖𝑃𝐻′
𝑚

√
𝜌𝛽‖2𝐹 = 𝐶2𝑒−2𝜆(Δ−|𝑋|),

(4.122)

where the equality used the fact that
∑︀

𝑚∈Z ‖𝑃𝐻
′

𝑚
√
𝜌𝛽‖2𝐹 = tr(𝜌𝛽) = 1. Putting together Eq. (4.118)

and (4.122) into Eq. (4.116), we finally obtain the upper bound of

‖𝑄𝐴𝛾 𝑈𝑋
√
𝜌𝛽‖2𝐹 ≤ (4Δ + 2)𝑒𝛽(Δ+1)𝛿𝛾 + 2𝐶2𝑒−2𝜆(Δ−|𝑋|). (4.123)

We let Δ = 𝑐𝛽−1 log(1/𝛿𝛾), which gives

‖𝑄𝐴𝛾 𝑈𝑋
√
𝜌𝛽‖2𝐹 ≤ 𝑐1𝑒

𝜆|𝑋|𝛿
𝑐2

𝑐2+𝛽
𝛾 , (4.124)

for some universal constants 𝑐1, 𝑐2. This proves the claim statement. ⊓⊔

We now proceed to prove Claim 107.

Proof of Claim 107. Recall that the aim is to prove that for every 𝑋 ⊆ Λ and unitary 𝑈𝑋 we have

⃦⃦
𝐴𝑄𝐴𝛾 𝑈𝑋

√
𝜌𝛽
⃦⃦2
𝐹
≤ 𝑒Θ(1)|𝑋|𝛿

Θ(1)/𝛽
𝛾

𝛾
+

Θ(1)|𝑋|5
𝛾5

⟨𝐴2⟩
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We let 𝑐5, 𝜆1, 𝜏1 be Θ(1) constants as defined in Lemma 86 and 𝑐1, 𝑐2, 𝜆 = 𝒪(1) be constants given
by Claim 106. For the proof, we first decompose 𝑄𝐴𝛾 as

𝑄𝐴𝛾 =

∞∑︁
𝑠=1

𝑃𝐴𝑠 , 𝑃𝐴𝑠 := 𝑃𝐴(𝑠𝛾,(𝑠+1)𝛾] + 𝑃𝐴[−(𝑠+1)𝛾,−𝑠𝛾), 𝑃𝐴0 := 𝑃𝐴[−𝛾,𝛾], (4.125)

where 𝑃𝐴[𝑎,𝑏] is defined as 𝑃𝐴[𝑎,𝑏] :=
∑︀

𝑎≤𝜔≤𝑏Π𝜔 (where Π𝜔 is the subspace spanned by the eigenvectors
of 𝐴 with eigenvalue 𝜔). Using this notation, observe that ‖𝐴𝑄𝐴𝛾 𝑈𝑋

√
𝜌𝛽‖𝐹 can be bounded by

⃦⃦
𝐴𝑄𝐴𝛾 𝑈𝑋

√
𝜌𝛽
⃦⃦2
𝐹
=

∞∑︁
𝑠=1

⃦⃦
𝐴𝑃𝐴𝑠 𝑈𝑋

√
𝜌𝛽
⃦⃦2
𝐹
≤

∞∑︁
𝑠=1

⃦⃦
𝐴𝑃𝐴𝑠

⃦⃦2 · ⃦⃦𝑃𝐴𝑠 𝑈𝑋√𝜌𝛽⃦⃦2𝐹
≤𝛾2

∞∑︁
𝑠=1

(𝑠+ 1)2
⃦⃦
𝑃𝐴𝑠 𝑈𝑋

√
𝜌𝛽
⃦⃦2
𝐹
, (4.126)

where we use ‖𝐴𝑃𝐴𝑠 ‖ ≤ 𝛾(𝑠 + 1) from the definition (4.125) of 𝑃𝐴𝑠 . The norm
⃦⃦
𝑃𝐴𝑠 𝑈𝑋

√
𝜌𝛽
⃦⃦
𝐹

is
bounded from above by

⃦⃦
𝑃𝐴𝑠 𝑈𝑋

√
𝜌𝛽
⃦⃦
𝐹
=

⃦⃦⃦⃦
⃦𝑃𝐴𝑠 𝑈𝑋

∞∑︁
𝑠′=0

𝑃𝐴𝑠′
√
𝜌𝛽

⃦⃦⃦⃦
⃦
𝐹

≤
∞∑︁
𝑠′=0

⃦⃦
𝑃𝐴𝑠 𝑈𝑋𝑃

𝐴
𝑠′
√
𝜌𝛽
⃦⃦
𝐹
, (4.127)

where we use
∑︀∞

𝑠′=0 𝑃
𝐴
𝑠′ = 1 in the first equation and in the second inequality we use the triangle

inequality for the Frobenius norm. Using Lemma 86 we additionally have

‖𝑃𝐴𝑠 𝑈𝑋𝑃𝐴𝑠′ ‖ ≤ 𝑐5|𝑋|𝑒−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1 for every 𝑠, 𝑠′ ≥ 0, (4.128)

where 𝑐5, 𝜆1 are given in Lemma 86. Using this, we have⃦⃦
𝑃𝐴𝑠 𝑈𝑋𝑃

𝐴
0
√
𝜌𝛽
⃦⃦
𝐹
=
⃦⃦
𝑃𝐴𝑠 𝑈𝑋𝑃

𝐴
0
√
𝜌𝛽
⃦⃦1/2
𝐹

·
⃦⃦
𝑃𝐴𝑠 𝑈𝑋𝑃

𝐴
0
√
𝜌𝛽
⃦⃦1/2
𝐹

(1)

≤
(︂
2𝑐1𝑒

𝜆|𝑋|𝛿
𝑐2

𝑐2+𝛽
𝛾

)︂1/2

· ‖𝑃𝐴𝑠 𝑈𝑋𝑃𝐴0
√
𝜌𝛽‖1/2𝐹

(2)

≤
(︂
2𝑐1𝑒

𝜆|𝑋|𝛿
𝑐2

𝑐2+𝛽
𝛾

)︂1/2

·
⃦⃦
𝑃𝐴𝑠 𝑈𝑋𝑃

𝐴
0

⃦⃦1/2 · ‖√𝜌𝛽‖1/2𝐹

(3)

≤
(︂
2𝑐1𝑒

𝜆|𝑋|𝛿
𝑐2

𝑐2+𝛽
𝛾

)︂1/2

·
(︁
𝑐5|𝑋|𝑒−(𝜆1𝛾|𝑠|/|𝑋|)1/𝜏1

)︁1/2
· 1

(4)
= (𝛿′𝛾)

1/2 ·
(︁
𝑐5|𝑋|𝑒−(𝜆1𝛾|𝑠|/|𝑋|)1/𝜏1

)︁1/2
,

(4.129)

where inequality (1) uses
⃦⃦
𝑃𝐴𝑠 𝑈𝑋𝑃

𝐴
0
√
𝜌𝛽
⃦⃦
𝐹

≤ 2𝑐1𝛿
𝑐2

𝑐2+𝛽
𝛾

9, inequality (2) uses Eq. (4.15), in-
equality (3) uses Eq. (4.128) and the fact that ‖√𝜌𝛽‖𝐹 = tr(𝜌𝛽) = 1 and equality (4) defines

9Since 𝑄𝐴
𝛾 ≤ 1 and 𝑃𝐴

0 = 1−𝑄𝐴
𝛾 , we have⃦⃦⃦

𝑃𝐴
𝑠 𝑈𝑋𝑃

𝐴
0
√
𝜌𝛽

⃦⃦⃦
𝐹
≤

⃦⃦⃦
𝑄𝐴

𝛾 𝑈𝑋(1−𝑄𝐴
𝛾 )

√
𝜌𝛽

⃦⃦⃦
𝐹
≤

⃦⃦⃦
𝑄𝐴

𝛾 𝑈𝑋
√
𝜌𝛽

⃦⃦⃦
𝐹
+
⃦⃦⃦
𝑄𝐴

𝛾 𝑈𝑋𝑄
𝐴
𝛾
√
𝜌𝛽

⃦⃦⃦
𝐹
≤

⃦⃦⃦
𝑄𝐴

𝛾 𝑈𝑋
√
𝜌𝛽

⃦⃦⃦
𝐹
+𝛿𝛾 ≤ 2𝑐1𝑒

𝜆|𝑋|𝛿
𝑐2

𝑐2+𝛽
𝛾 ,
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𝛿′𝛾 := 2𝑐1𝑒
𝜆|𝑋|𝛿

𝑐2
𝑐2+𝛽
𝛾 . Using Eq. (4.129), we obtain the following

∞∑︁
𝑠′=0

⃦⃦
𝑃𝐴𝑠 𝑈𝑋𝑃

𝐴
𝑠′
√
𝜌𝛽
⃦⃦
𝐹
≤
⃦⃦
𝑃𝐴𝑠 𝑈𝑋𝑃

𝐴
0
√
𝜌𝛽
⃦⃦
𝐹
+

∞∑︁
𝑠′=1

⃦⃦
𝑃𝐴𝑠 𝑈𝑋𝑃

𝐴
𝑠′
⃦⃦
·
⃦⃦
𝑃𝐴𝑠′

√
𝜌𝛽
⃦⃦
𝐹

≤ 𝛿′
1/2
𝛾 𝑐

1/2
5 |𝑋|1/2𝑒−(𝜆1𝛾𝑠/|𝑋|)1/𝜏1/2

+

∞∑︁
𝑠′=1

𝑐5|𝑋|𝑒−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1 ⃦⃦𝑃𝐴𝑠′ √𝜌𝛽⃦⃦𝐹 , (4.130)

where the first term in the inequality was obtained from Eq. (4.129) and the second term was
obtained from Eq. (4.128). We now upper-bound the summation in the second term of Eq. (4.130)
by using the Cauchy–Schwarz inequality as follows:

∞∑︁
𝑠′=1

𝑒−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1 ⃦⃦𝑃𝐴𝑠′ √𝜌𝛽⃦⃦𝐹
=

∞∑︁
𝑠′=1

𝑒−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1/2 ·
(︀
𝑒−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1/2 ⃦⃦𝑃𝐴𝑠′ √𝜌𝛽⃦⃦𝐹 )︀

≤
(︃ ∞∑︁
𝑠′=1

𝑒−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1
)︃1/2(︃ ∞∑︁

𝑠′=1

𝑒−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1 ⃦⃦𝑃𝐴𝑠′ √𝜌𝛽⃦⃦2𝐹
)︃1/2

(1)

≤ 𝜉1/2

(︃ ∞∑︁
𝑠′=1

𝑝𝐴𝑠′𝑒
−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1

)︃1/2

, (4.131)

with 𝜉 = 2 + 2𝜏1|𝑋|
𝜆1𝛾

(2𝜏1)
𝜏1 , where 𝑝𝑠′ :=

⃦⃦
𝑃𝐴𝑠′

√
𝜌𝛽
⃦⃦2
𝐹

and we used Fact 78 in inequality (1). Note
that

∑︀∞
𝑠′=1 𝑝𝑠′ = ‖𝑄𝐴𝛾

√
𝜌𝛽‖2𝐹 because of Eq. (4.125). We can obtain the following upper bound by

where the first inequality used 𝑃𝐴
𝑠 ⪯ 𝑄𝐴

𝛾 (𝑠 ≥ 1) and the last inequality used ‖𝑄𝐴
𝛾 𝑈𝑋

√
𝜌𝛽‖𝐹 ≤ 𝑐1𝑒

𝜆|𝑋|𝛿
𝑐2

𝑐2+𝛽
𝛾 from

Claim 106.
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combining the equations Eq. (4.127), (4.130) and (4.131):⃦⃦
𝑃𝐴𝑠 𝑈𝑋

√
𝜌𝛽
⃦⃦2
𝐹

≤
(︁ ∞∑︁
𝑠′=0

⃦⃦
𝑃𝐴𝑠 𝑈𝑋𝑃

𝐴
𝑠′
√
𝜌𝛽
⃦⃦
𝐹

)︁2
≤
(︁
𝛿′

1/2
𝛾 𝑐

1/2
5 |𝑋|1/2𝑒−(𝜆1𝛾𝑠/|𝑋|)1/𝜏1/2 +

∞∑︁
𝑠′=1

𝑐5|𝑋|𝑒−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1 ⃦⃦𝑃𝐴𝑠′ √𝜌𝛽⃦⃦𝐹 )︁2
≤
(︁
𝛿′

1/2
𝛾 𝑐

1/2
5 |𝑋|1/2𝑒−(𝜆1𝛾𝑠/|𝑋|)1/𝜏1/2 + 𝑐5|𝑋|𝜉1/2 ·

(︃ ∞∑︁
𝑠′=1

𝑝𝐴𝑠′𝑒
−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1

)︃1/2 )︁2
≤ 2𝑐5𝛿

′
𝛾 |𝑋|𝑒−(𝜆1𝛾𝑠/|𝑋|)1/𝜏1⏟  ⏞  

:=𝑓1(𝑠)

+2𝑐25|𝑋|2𝜉 ·
(︃ ∞∑︁
𝑠′=1

𝑝𝐴𝑠′𝑒
−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1

)︃
.⏟  ⏞  

:=𝑓2(𝑠)

Recall that the goal of this claim was to upper bound Eq. (4.126), which we can rewrite now as

⃦⃦
𝐴𝑄𝐴𝛾 𝑈𝑋

√
𝜌𝛽
⃦⃦2
𝐹
≤ 𝛾2

∞∑︁
𝑠=1

(𝑠+1)2
⃦⃦
𝑃𝐴𝑠 𝑈𝑋

√
𝜌𝛽
⃦⃦2
𝐹
≤ 𝛾2

∞∑︁
𝑠=1

(𝑠+1)2𝑓1(𝑠)+𝛾
2

∞∑︁
𝑠=1

(𝑠+1)2𝑓2(𝑠). (4.132)

We bound each of these terms separately. In order to bound the first term, observe that

𝛾2
∞∑︁
𝑠=1

(𝑠+ 1)2𝑓1(𝑠) = 2𝛾2𝑐5𝛿
′
𝛾 |𝑋|

∞∑︁
𝑠=1

(𝑠+ 1)2𝑒−(𝜆1𝛾𝑠/|𝑋|)1/𝜏1

(1)

≤ 2𝛾2𝑐5𝛿
′
𝛾 |𝑋| · 8𝜏1 ·

(︂
(3𝜏1)

𝜏1 |𝑋|
𝜆1𝛾

)︂3

≤
16𝑐5𝛿

′
𝛾 |𝑋|4𝜏1(3𝜏1)3𝜏1

𝜆31𝛾
,

where inequality (1) uses Fact 78. We now bound the second term in Eq. (4.132) as follows

𝛾2
∞∑︁
𝑠=1

(𝑠+ 1)2𝑓2(𝑠) = 2𝛾2𝑐25|𝑋|2𝜉
∞∑︁
𝑠=1

(𝑠+ 1)2

(︃ ∞∑︁
𝑠′=1

𝑝𝐴𝑠′𝑒
−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1

)︃
.

= 2𝛾2𝑐25|𝑋|2𝜉
∞∑︁
𝑠′=1

𝑝𝐴𝑠′
(︁ ∞∑︁
𝑠=1

(𝑠+ 1)2𝑒−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1
)︁

≤ 2𝛾2𝑐25|𝑋|2𝜉
∞∑︁
𝑠′=1

𝑝𝐴𝑠′(2𝑠
′)2
(︁ ∞∑︁
𝑠=1

(1 + |𝑠− 𝑠′|)2𝑒−(𝜆1𝛾|𝑠−𝑠′|/|𝑋|)1/𝜏1
)︁

(1)

≤ 2𝛾2𝑐25|𝑋|2𝜉 · 𝜉′
∞∑︁
𝑠′=1

𝑝𝐴𝑠′(2𝑠
′)2,

. (4.133)

with 𝜉′ = 2+ 16
(︁
(3𝜏1)𝜏1 |𝑋|

𝜆1𝛾

)︁3
, where inequality (1) follows from Fact 78. Further upper bound this
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expression by simplifying the pre-factors, we get

𝛾2
∞∑︁
𝑠=1

(𝑠+ 1)2𝑓2(𝑠) ≤ 8𝛾2𝑐25|𝑋|2𝜉𝜉′
∞∑︁
𝑠′=1

𝑝𝐴𝑠′(𝑠
′)2

= 8𝑐25|𝑋|2𝜉𝜉′
∞∑︁
𝑠′=1

(𝛾𝑠′)2𝑝𝐴𝑠′

= 8𝑐25|𝑋|2𝜉𝜉′
∞∑︁
𝑠′=1

⃦⃦
(𝛾𝑠′)𝑃𝐴𝑠′

√
𝜌𝛽
⃦⃦2
𝐹

(2)

≤ 8𝑐25|𝑋|2𝜉𝜉′
∞∑︁
𝑠′=0

⃦⃦
𝑃𝐴𝑠′𝐴

√
𝜌𝛽
⃦⃦2
𝐹
= 8𝑐25|𝑋|2𝜉𝜉′⟨𝐴2⟩,

(4.134)

In inequality (2), we used (𝛾𝑠′)𝑃𝐴𝑠′ ⪯ 𝐴𝑃𝐴𝑠′ from the definition (4.125) of 𝑃𝐴𝑠′ . Note that |𝑋|2𝜉𝜉′
is bounded from above by 𝒪(|𝑋|6)). By combining the above inequalities altogether, we prove
Eq. (4.82). ⊓⊔

4.10.3 Derivation of the sub-exponential concentration

Recall that the goal in this section is to prove the following lemma.

Lemma 112 (Restatement of Lemma 86). Let 𝐴 be a (𝜏, 𝑎1, 𝑎2, 1)-quasi-local operator with 𝜏 < 1,
as given in Eq. (4.18). For an arbitrary operator 𝑂𝑋 supported on a subset 𝑋 ⊆ Λ with |𝑋| = 𝑘0
and ‖𝑂𝑋‖ = 1, we have

‖𝑃𝐴≥𝑥+𝑦𝑂𝑋𝑃𝐴≤𝑥‖ ≤ 𝑐5 · 𝑘0 exp
(︁
− (𝜆1𝑦/𝑘0)

1/𝜏1
)︁
, (4.135)

where 𝜏1 := 2
𝜏 − 1 and 𝑐5 and 𝜆1 are constants which only depend on 𝑎1 and 𝑎2. In particular, the

𝑎2 dependence of 𝑐5 and 𝜆1 is given by 𝑐5 ∝ 𝑎
2/𝜏
2 and 𝜆1 ∝ 𝑎

−2/𝜏
2 respectively.

Before proving this lemma, let us elaborate upon the method. Recall that

𝑃𝐴≤𝑥 =
∑︁
𝜔≤𝑥

Π𝜔, 𝑃𝐴>𝑦 =
∑︁
𝜔>𝑦

Π𝜔, (4.136)

where Π𝜔 is the projector onto the eigenvalue 𝜔 eigenspace of 𝐴. One way to prove the upper bound
in the estimation of the norm (4.135) is to utilize the technique in Ref. [AKL16] (i.e., Lemma 85).
The argument proceeds by considering

‖𝑃𝐴≥𝑥+𝑦𝑂𝑋𝑃𝐴≤𝑥‖ = ‖𝑃𝐴≥𝑥+𝑦𝑒−𝜈𝐴𝑒𝜈𝐴𝑂𝑋𝑒−𝜈𝐴𝑒𝜈𝐴𝑃𝐴≤𝑥‖
≤ ‖𝑃𝐴≥𝑥+𝑦𝑒−𝜈𝐴‖ · ‖𝑒𝜈𝐴𝑂𝑋𝑒−𝜈𝐴‖ · ‖𝑒𝜈𝐴𝑃𝐴≤𝑥‖
≤ 𝑒−𝜈𝑦‖𝑒𝜈𝐴𝑂𝑋𝑒−𝜈𝐴‖, (4.137)

which reduces the problem to estimation of the norm ‖𝑒𝜈𝐴𝑂𝑋𝑒−𝜈𝐴‖. Additionally, by definition
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of 𝐴 in Theorem 110 we have

𝐴 =
𝑛∑︁
ℓ=1

𝑔ℓ𝐴ℓ, (4.138)

where 𝐴ℓ is 𝜅-local and 𝑔ℓ is sub-exponentially decaying function for ℓ (as made precise in Eq. (4.18)),
namely 𝑔ℓ ∝ exp(−𝒪(ℓ𝜏 )). In this case, for 𝜈 = Θ(1) in (4.137), the norm of the imaginary time
evolution can be finitely bounded only in the case 𝐷 = 1 [Kuw16]. That is, the norm ‖𝑒𝜈𝐴𝑂𝑋𝑒−𝜈𝐴‖
diverges to infinity for 𝜏 < 1. However, our main contribution in this section is that we are able to
prove the lemma statement without going through the inequalities in (4.137) (which in turn used
earlier results of [Kuw16, AKL16]). We now give more details.

Proof of Lemma 112

In order to estimate the norm, we need to take a different route from (4.137). Recall that 𝐴 is a
(𝜏, 𝑎1, 𝑎2, 1)-quasi local operator. Let 𝐼 be any interval of the real line and 𝑃𝐴𝐼 be the projector onto
the eigenspace of 𝐴 with eigenvalues in 𝐼. Using the operator inequality

𝑃𝐴≥𝑧(𝐴− 𝜔1)𝑚 ⪰ (𝑧 − 𝜔)𝑚𝑃𝐴≥𝑧,

we obtain

‖(𝐴− 𝜔1)𝑚𝑂𝑋𝑃
𝐴
𝐼 ‖ ≥ ‖𝑃𝐴≥𝑧(𝐴− 𝜔)𝑚𝑂𝑋𝑃

𝐴
𝐼 ‖ ≥ (𝑧 − 𝜔)𝑚‖𝑃𝐴≥𝑧𝑂𝑋𝑃𝐴𝐼 ‖, (4.139)

hence

‖𝑃𝐴≥𝑧𝑂𝑋𝑃𝐴𝐼 ‖ ≤ ‖(𝐴− 𝜔)𝑚𝑂𝑋𝑃
𝐴
𝐼 ‖

(𝑧 − 𝜔)𝑚
. (4.140)

Our strategy to establish Eq. (4.135) will be to expand

‖𝑃𝐴≥𝑥+𝑦𝑂𝑋𝑃𝐴≤𝑥‖ ≤
∞∑︁
𝑗=0

‖𝑃𝐴≥𝑥+𝑦𝑂𝑋𝑃𝐴𝐼𝑗‖, (4.141)

for carefully chosen intervals 𝐼𝑗 := (𝑥− 𝑎1(𝑗 +1), 𝑥− 𝑎1𝑗] (the term 𝑎1 is as given in the statement
of Lemma 112). Towards this, let us fix an arbitrary 𝜔 and an interval 𝐼 := (𝜔 − 𝑎1, 𝜔], and prove
an upper bound on ‖𝑃𝐴≥𝜔+𝜃𝑂𝑋𝑃𝐴𝐼 ‖ (for all 𝜃). We show the following claim.

Claim 113. Let 𝐴 be a (𝜏, 𝑎1, 𝑎2, 1)-quasi local operator as defined in (4.18). There is a constant
𝑐6 such that

‖𝑃𝐴≥𝜔+𝜃𝑂𝑋𝑃𝐴𝐼 ‖ ≤ 1

𝜏
exp

[︁
−[𝜃/(𝑒𝑐6𝑘0)]

1/𝜏1 + 1
]︁
. (4.142)

The claim is proved in subsection 4.10.3. Let us use the claim to establish the lemma. In the
inequality (4.141), we need to estimate ‖𝑃𝐴≥𝑥+𝑦𝑂𝑋𝑃𝐴𝐼𝑗‖ with 𝐼𝑗 := (𝑥− (𝑗 + 1)𝑎1, 𝑥− 𝑗𝑎1]. Setting
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𝜔 = 𝑥− 𝑗𝑎1 and 𝜃 = 𝑦 + 𝑗𝑎1 in Claim 113, we have

‖𝑃𝐴≥𝑥+𝑦𝑂𝑋𝑃𝐴𝐼𝑗‖ ≤ 1

𝜏
exp

{︃
−
(︂
𝑦 + 𝑎1𝑗

𝑒𝑐6𝑘0

)︂1/𝜏1

+ 1

}︃
. (4.143)

In order to complete the bound on Equation (4.141), we need to take summation with respect to 𝑗.
We have

∞∑︁
𝑗=0

‖𝑃𝐴≥𝑥+𝑦𝑂𝑋𝑃𝐴𝐼𝑗‖ ≤
∞∑︁
𝑗=0

1

𝜏
exp

{︃
−
(︂
𝑦 + 𝑎1𝑗

𝑒𝑐6𝑘0

)︂1/𝜏1

+ 1

}︃
≤ 1

𝜏
𝑒
− 1

2

(︁
𝑦

𝑒𝑐6𝑘0

)︁1/𝜏1
(︂
1 +

𝑒𝑐6𝑘0𝜏1
𝑎1

(2𝜏1)
1/𝜏1

)︂
,

(4.144)

where in last inequality we used Fact 78 (3) with 𝑐 = (𝑒𝑐6𝑘0/𝑎1)
−1/𝜏1 , 𝑝 = 1/𝜏1 and 𝑎 = 𝑦/𝑎1. This

gives the form of (4.135) and completes the proof.

Proof of Claim 113

From Equation (4.140), it suffices to upper bound ‖(𝐴 − 𝜔)𝑚𝑂𝑋𝑃
𝐴
𝐼 ‖. Abbreviate 𝐴 := 𝐴 − 𝜔1.

Introduce the multi-commutator

ad𝑠
𝐴
(𝑂𝑋) := [𝐴, . . . [𝐴, [𝐴,𝑂𝑋 ]] . . .]⏟  ⏞  

𝑠 times

.

Consider the following identity,

𝐴𝑚𝑂𝑋𝑃
𝐴
𝐼 =

𝑚∑︁
𝑠=0

(︂
𝑚

𝑠

)︂
ad𝑠

𝐴
(𝑂𝑋)𝐴

𝑚−𝑠𝑃𝐴𝐼 . (4.145)

This shows that

‖𝐴𝑚𝑂𝑋𝑃𝐴𝐼 ‖ ≤
𝑚∑︁
𝑠=0

(︂
𝑚

𝑠

)︂
‖ ad𝑠

𝐴
(𝑂𝑋)‖ · ‖𝐴𝑚−𝑠𝑃𝐴𝐼 ‖ ≤

𝑚∑︁
𝑠=0

(︂
𝑚

𝑠

)︂
𝑎𝑚−𝑠
1 ‖ ad𝑠

𝐴
(𝑂𝑋)‖, (4.146)

where we use ‖𝐴𝑚−𝑠𝑃𝐴𝐼 ‖ = ‖(𝐴− 𝜔)𝑚−𝑠𝑃𝐴𝐼 ‖ ≤ 𝑎𝑚−𝑠
1 for 𝐼 = (𝜔 − 𝑎1, 𝜔]. The remaining task is to

estimate the upper bound of ‖ ad𝑠
𝐴
(𝑂𝑋)‖ = ‖ ad𝑠𝐴(𝑂𝑋)‖. This is done in the following claim.

Claim 114. Let 𝐴 be a (𝜏, 𝑎1, 𝑎2, 1)-quasi local operator as defined in (4.18). Then, for an arbitrary
operator 𝑂𝑋 which is supported on a subset 𝑋 (|𝑋| = 𝑘0), the norm of the multi-commutator
ad𝑠𝐴(𝑂𝑋) is bounded from above by

‖ ad𝑠𝐴(𝑂𝑋)‖ ≤ (2𝑎1)
𝑠(2𝑘0)

𝑠𝑒𝑠

𝜏
·
(︂

2

𝑎2𝜏

)︂ 2𝑠
𝜏

· (𝑠𝜏1)𝑠 for 𝑠 ≤ 𝑚, (4.147)

where the constants 𝑎1 and 𝑎2 have been defined in Eq. (4.18).
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By applying the inequality (4.147) to (4.146), we obtain

‖𝐴𝑚𝑂𝑋𝑃𝐴𝐼 ‖ ≤
𝑚∑︁
𝑠=0

(︂
𝑚

𝑠

)︂
𝑎𝑚−𝑠
1

(2𝑎1)
𝑠(2𝑘0)

𝑠𝑒𝑠

𝜏
·
(︂

2

𝑎2𝜏

)︂ 2𝑠
𝜏

· (𝑠𝜏1)𝑠

≤
𝑚∑︁
𝑠=0

(︂
𝑚

𝑠

)︂
(2𝑎1)

𝑚 (2𝑒𝑘0)
𝑚

𝜏
·
(︂

2

𝑎2𝜏

)︂ 2𝑚
𝜏

· (𝑚𝜏1)𝑚

= (4𝑎1)
𝑚 (2𝑒𝑘0)

𝑚

𝜏
·
(︂

2

𝑎2𝜏

)︂ 2𝑚
𝜏

· (𝑚𝜏1)𝑚 =
1

𝜏

[︁
8𝑒𝑎1𝑘0[2/(𝑎2𝜏)]

2/𝜏𝑚𝜏1
]︁𝑚

.

Therefore, setting 𝑧 = 𝜔 + 𝜃 in the inequality (4.140), we obtain

‖𝑃𝐴≥𝜔+𝜃𝑂𝑋𝑃𝐴𝐼 ‖ ≤ ‖𝐴𝑚𝑂𝑋𝑃𝐴𝐼 ‖
𝜃𝑚

≤ 1

𝜏

[︂
8𝑒𝑎1𝑘0[2/(𝑎2𝜏)]

2/𝜏𝑚
𝜏1

𝜃

]︂𝑚
(4.148)

≤ 1

𝜏

(︂
𝑐6𝑘0𝑚

𝜏1

𝜃

)︂𝑚
, (4.149)

where 𝑐6 := 8𝑒𝑎1[2/(𝑎2𝜏)]
2/𝜏 . Let us choose 𝑚 = 𝑚̃ with 𝑚̃ the minimum integer such that

𝑐6𝑘0𝑚̃
𝜏1

𝜃
≤ 1/𝑒. (4.150)

The above condition is satisfied by 𝑚̃𝜏1 ≤ 𝜃/(𝑒𝑐6𝑘0), which implies

𝑚̃ =
⌊︁
[𝜃/(𝑒𝑐6𝑘0)]

1/𝜏1
⌋︁
, (4.151)

where ⌊·⌋ is the floor function. From this choice, the claim concludes.

Proof of Claim 114

As stated in Claim 114, we let 𝐴 be a (𝜏, 𝑎1, 𝑎2, 1)-quasi local operator as defined in (4.18). Recall
that we need to show, for an arbitrary operator 𝑂𝑋 which is supported on 𝑘0 sites, the norm of the
multi-commutator ad𝑠𝐴(𝑂𝑋) is bounded by

‖ ad𝑠𝐴(𝑂𝑋)‖ ≤ (2𝑎1)
𝑠(2𝑘0)

𝑠𝑒𝑠

𝜏
·
(︂

2

𝑎2𝜏

)︂ 2𝑠
𝜏

· (𝑠𝜏1)𝑠 for 𝑠 ≤ 𝑚.

We start from the following expansion:

ad𝑠𝐴(𝑂𝑋) =
∑︁

𝑘1,𝑘2,...,𝑘𝑠

𝑔𝑘1𝑔𝑘2 · · · 𝑔𝑘𝑠 [𝐴𝑘𝑠 , [𝐴𝑘𝑠−1 , · · · [𝐴𝑘1 , 𝑂𝑋 ] · · · ].

By using Lemma 3 in Ref. [KMS16] and setting 𝜁 = 1 (see Definition 80) we obtain

‖[[𝐴𝑘𝑠 , [𝐴𝑘𝑠−1 , · · · [𝐴𝑘1 , 𝑂𝑋 ] · · · ]‖ ≤ 2𝑠𝑘0(𝑘0 + 𝑘1)(𝑘0 + 𝑘1 + 𝑘2) · · · (𝑘0 + 𝑘1 + 𝑘2 + · · ·+ 𝑘𝑠−1),
(4.152)

135



where we used that 𝐴 is a (𝜏, 𝑎1, 𝑎2, 1)-quasi local operator. Recall that we set ‖𝑂𝑋‖ = 1 and
|𝑋| = 𝑘0. The norm of ad𝑠𝐴(𝑂𝑋) is bounded from above by

‖ ad𝑠𝐴(𝑂𝑋)‖

≤
∞∑︁

𝑘1,𝑘2,...,𝑘𝑠=1

2𝑠𝑔𝑘1𝑔𝑘2 · · · 𝑔𝑘𝑠𝑘0(𝑘0 + 𝑘1)(𝑘0 + 𝑘1 + 𝑘2) · · · (𝑘0 + 𝑘1 + 𝑘2 + · · ·+ 𝑘𝑠−1)

=
∑︁
𝐾≥𝑠

∑︁
𝑘1+𝑘2+...+𝑘𝑠=𝐾
𝑘1≥1,𝑘2≥1,...,𝑘𝑠≥1

2𝑠𝑔𝑘1𝑔𝑘2 · · · 𝑔𝑘𝑠𝑘0(𝑘0 + 𝑘1)(𝑘0 + 𝑘1 + 𝑘2) · · · (𝑘0 + 𝑘1 + 𝑘2 + · · ·+ 𝑘𝑠−1),

(4.153)

where the summation over 𝐾 starts from 𝑠 because each of {𝑘𝑗}𝑠𝑗=1 is larger than 1. Now, using the
inequality log[𝑔𝑘/𝑎1] ≤ −𝑎2𝑘𝜏 with 𝜏 ≤ 1, we have

∑︀𝑠
𝑗=1 log(𝑔𝑘𝑗/𝑎1) ≤ log(𝑔𝑘1+𝑘2+···+𝑘𝑠/𝑎1). This

follows from
∑︀𝑠

𝑗=1 𝑘
𝜏
𝑗 ≥ (𝑘1 + 𝑘2 + · · ·+ 𝑘𝑠)

𝜏 . Thus, using 𝑘1 + 𝑘2 + · · ·+ 𝑘𝑠 = 𝐾, the summand in
the inequality (4.153) is upper-bounded by

𝑔𝑘1𝑔𝑘2 · · · 𝑔𝑘𝑠𝑘0(𝑘0 + 𝑘1)(𝑘0 + 𝑘1 + 𝑘2) · · · (𝑘0 + 𝑘1 + 𝑘2 + · · ·+ 𝑘𝑠−1) ≤ 𝑎𝑠1(𝑔𝐾/𝑎1)𝑘0(𝑘0 +𝐾)𝑠−1,
(4.154)

where we use the inequality 𝑘1 + 𝑘2 + · · · + 𝑘𝑗 ≤ 𝐾 for 𝑗 = 1, 2, . . . , 𝑠 − 1. By combining the two
inequalities (4.153) and (4.154), we obtain

‖ ad𝑠𝐴(𝑂𝑋)‖ ≤
∑︁
𝐾≥𝑠

∑︁
𝑘1+𝑘2+...+𝑘𝑠=𝐾
𝑘1≥1,𝑘2≥1,...,𝑘𝑠≥1

(2𝑎1)
𝑠(𝑔𝐾/𝑎1)𝑘0(𝑘0 +𝐾)𝑠−1

(1)

≤
∑︁
𝐾≥𝑠

(︂(︂
𝑠

𝐾 − 𝑠

)︂)︂
(2𝑎1)

𝑠(𝑔𝐾/𝑎1)𝑘0(𝑘0 +𝐾)𝑠−1

=
∑︁
𝐾≥𝑠

(︂
𝐾 − 1

𝑠− 1

)︂
(2𝑎1)

𝑠(𝑔𝐾/𝑎1)𝑘0(𝑘0 +𝐾)𝑠−1

(2)

≤(2𝑎1)
𝑠 (2𝑘0)

𝑠

2

∑︁
𝐾≥𝑠

𝑒𝑠𝐾𝑠

𝑠𝑠
(𝑔𝐾/𝑎1)(𝐾)𝑠−1

(3)

≤ (2𝑎1)
𝑠(2𝑘0)

𝑠𝑒𝑠

𝑠𝑠
· 1
2

∑︁
𝐾≥𝑠

𝐾2𝑠−1𝑒−𝑎2𝐾
𝜏 ≤ (2𝑎1)

𝑠(2𝑘0)
𝑠𝑒𝑠

𝑠𝑠
· 1
2

∑︁
𝐾≥0

𝐾2𝑠−1𝑒−𝑎2𝐾
𝜏

(4)

≤ (2𝑎1)
𝑠(2𝑘0)

𝑠𝑒𝑠

𝑠𝑠𝜏
·
(︂

2𝑠

𝑎2𝜏

)︂ 2𝑠
𝜏

=
(2𝑎1)

𝑠(2𝑘0)
𝑠𝑒𝑠

𝜏
·
(︂

2

𝑎2𝜏

)︂ 2𝑠
𝜏

·
(︁
𝑠

2
𝜏
−1
)︁𝑠
,

where in (1),
(︀(︀ )︀)︀

denotes the multi-combination, namely
(︀(︀
𝑛
𝑚

)︀)︀
=
(︀
𝑛+𝑚−1
𝑛−1

)︀
, in (2) we upper bound(︀

𝐾−1
𝑠−1

)︀
≤ 𝑒𝑠𝐾𝑠

𝑠𝑠 , 𝑘0 +𝐾 ≤ 2𝑘0𝐾, in (3) we use the sub-exponential form of 𝑔𝐾 in Eq. (4.18) and in
(4) we use Fact 78. Since 𝜏1 = 2

𝜏 − 1, this proves the statement.
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4.10.4 Quasi-locality of ̃︁𝑊
We here aim to obtain (𝜏, 𝑎1, 𝑎2, 𝜁)-quasi-locality of the operator ̃︁𝑊 , where {𝜏, 𝑎1, 𝑎2, 𝜁} defined in
Definition 80. This is used in Section 4.9.6. In particular, we will show that

(︀
𝜏, 𝑎1, 𝑎2, 𝜁

)︀
=

(︂
1/𝐷,𝒪(1),𝒪(1/𝛽),𝒪(𝛽2𝐷+1)

(︂
max
𝑗∈Λ

𝑣𝑗

)︂)︂
suffices to prove the quasi-locality of ̃︁𝑊 . Recall the definition of ̃︁𝑊 :

̃︁𝑊 =

∫︁ ∞

−∞
𝑓𝛽(𝑡) 𝑒

−𝑖𝐻𝑡 𝑊 𝑒𝑖𝐻𝑡𝑑𝑡,

where

𝑓𝛽(𝑡) =
2

𝛽𝜋
log

𝑒𝜋|𝑡|/𝛽 + 1

𝑒𝜋|𝑡|/𝛽 − 1

and
𝑊 =

∑︁
𝑖∈Λ

𝑣𝑖𝐸𝑖.

We write ̃︁𝑊 =
∑︁
𝑖

𝑣𝑖

∫︁ ∞

−∞
𝑓𝛽(𝑡) 𝑒

−𝑖𝐻𝑡 𝐸𝑖 𝑒
𝑖𝐻𝑡𝑑𝑡.

Abbreviate
𝐸̃𝑖(𝑡) := 𝑒−𝑖𝐻𝑡 𝐸𝑖 𝑒

𝑖𝐻𝑡

and recall that 𝐸̃𝑖 =
∫︀∞
∞ 𝑓𝛽(𝑡)𝐸̃𝑖(𝑡). Moreover, (with some abuse of notation) let 𝐵(𝑟, 𝑖) ⊆ Λ denote

the ball of radius 𝑟 such that: the centre of 𝐵(𝑟, 𝑖) coincides with the the center of the smallest ball
containing 𝐸𝑖. We assume that 𝑟 ranges in the set {𝑚𝑖,𝑚𝑖 + 1, . . . , 𝑛𝑖}, where 𝑚𝑖 is the radius of
the smallest ball containing 𝐸𝑖 and 𝑛𝑖 is the number such that 𝐵(𝑛𝑖, 𝑖) = Λ. Define

𝐸̃𝑟𝑖 (𝑡) := tr𝐵(𝑟,𝑖)𝑐 [𝐸̃𝑖(𝑡)]⊗
1𝐵(𝑟,𝑖)𝑐

tr[1𝐵(𝑟,𝑖)𝑐 ]
, 𝐸̃0

𝑖 (𝑡) = 0,

i.e., 𝐸̃𝑟𝑖 (𝑡) traces out all the qudits in 𝐸̃𝑖(𝑡) that are at outside the 𝐵(𝑟, 𝑖)-ball around 𝐸̃𝑟𝑖 . From
[BHV06], we have

‖𝐸̃𝑖(𝑡)− 𝐸̃𝑟𝑖 (𝑡)‖ ≤ ‖𝐸𝑖‖min
{︁
1, 𝑐3𝑟

𝐷−1𝑒−𝑐4(𝑟−𝑚𝑖−𝑣LR|𝑡|)
}︁

which in particular implies

‖𝐸̃𝑟𝑖 (𝑡)− 𝐸̃𝑟−1
𝑖 (𝑡)‖ ≤ 2min

{︁
1, 𝑐3𝑒

𝑐4𝑚𝑖𝑟𝐷−1𝑒−𝑐4(𝑟−𝑣LR|𝑡|)
}︁
,

where we use ‖𝐸𝑖‖ = 1, 𝑣LR is the Lieb-Robinson velocity (as defined in Fact 81) and 𝑐3, 𝑐4 are con-
stants. We note that the 2min{1, ·} is derived from the trivial upper bound ‖𝐸̃𝑟𝑖 (𝑡)− 𝐸̃𝑟+1

𝑖 (𝑡)‖ ≤ 2.
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This allows us to write the following quasi-local expression:

𝐸̃𝑖(𝑡) =

𝑛𝑖∑︁
𝑟=𝑚𝑖

(︁
𝐸̃𝑟𝑖 (𝑡)− 𝐸̃𝑟−1

𝑖 (𝑡)
)︁
.

Using this, we can now write the quasi-local representation of 𝐸̃𝑖 as follows.∫︁ ∞

−∞
𝑓𝛽(𝑡)𝐸̃𝑖(𝑡)𝑑𝑡 =

∫︁ ∞

−∞
𝑓𝛽(𝑡)

𝑛𝑖∑︁
𝑟=𝑚𝑖

(︁
𝐸̃𝑟𝑖 (𝑡)− 𝐸̃𝑟−1

𝑖 (𝑡)
)︁
.

To see that it is quasi-local, observe that the term with radius 𝑟 has norm∫︁ ∞

−∞
𝑓𝛽(𝑡)

⃦⃦⃦
𝐸̃𝑟𝑖 (𝑡)− 𝐸̃𝑟−1

𝑖 (𝑡)
⃦⃦⃦

≤ 2𝑐3𝑒
𝑐4𝑚𝑖𝑟𝐷−1 ·

(︃
𝑒−𝑐4𝑟

∫︁
|𝑡|≤𝑟/(2𝑣LR)

𝑒𝑐4𝑣LR|𝑡|𝑓𝛽(𝑡)𝑑𝑡+

∫︁
|𝑡|>𝑟/(2𝑣LR)

𝑓𝛽(𝑡)𝑑𝑡

)︃

≤ 2𝑐3𝑒
𝑐4𝑚𝑖𝑟𝐷−1 ·

(︃
𝑒−𝑐4𝑟/2

∫︁ ∞

−∞
𝑓𝛽(𝑡)𝑑𝑡+

∫︁
|𝑡|>𝑟/(2𝑣LR)

2𝛽

𝜋|𝑡|𝑒
−𝜋|𝑡|/𝛽𝑑𝑡

)︃

≤ 2𝑐3𝑒
𝑐4𝑚𝑖𝑟𝐷−1

(︃
𝑒−𝑐4𝑟/2 +

4𝛽𝑣LR
𝜋𝑟

𝑒−𝜋𝑟/(2𝛽𝑣LR)

𝜋/𝛽

)︃

= 2𝑐3𝑒
𝑐4𝑚𝑖𝑟𝐷−1

(︂
𝑒−𝑐4𝑟/2 +

4𝛽2𝑣LR
𝜋2

𝑟−1𝑒−𝜋𝑟/(2𝛽𝑣LR)

)︂
≤ 𝑐5𝑟

𝐷−1𝑒−𝑐
′
4𝑟,

with 𝑐′4 = min(𝑐4/2, 𝜋/(2𝛽𝑣LR)), where 𝑐5 = 𝒪(𝛽2) is a constant which does not depend on 𝑟, and
we use

∫︀∞
−∞ 𝑓𝛽(𝑡) = 𝑓𝛽(0) = 1 and 𝑓𝛽(𝑡) ≤ 2𝛽/(𝜋|𝑡|)𝑒−𝜋|𝑡|/𝛽 . Note that 𝑐′4 = 𝒪(1/𝛽). Define

𝑎𝐵(𝑟,𝑖) := 𝑒𝑐
′
4𝑟/2

∫︁ ∞

−∞
𝑓𝛽(𝑡)

(︁
𝐸̃𝑟𝑖 (𝑡)− 𝐸̃𝑟−1

𝑖 (𝑡)
)︁
.

Here, the operator 𝑎𝐵(𝑟,𝑖) is supported on the subset 𝐵(𝑟, 𝑖). Then, from |𝐵(𝑟, 𝑖)| = 𝒪(𝑟𝐷), the
quasi-local representation of ̃︁𝑊 is given as

̃︁𝑊 =
∑︁
𝑖∈Λ

𝑣𝑖

𝑛𝑖∑︁
𝑟=𝑚𝑖

𝑒−𝑐
′
4𝑟/2𝑎𝐵(𝑟,𝑖) =

∑︁
𝑖∈Λ

𝑛𝑖∑︁
𝑟=𝑚𝑖

𝑒−𝒪(|𝐵(𝑟,𝑖)|
1
𝐷 )𝑣𝑖𝑎𝐵(𝑟,𝑖),

with 𝑒−𝒪(|𝐵(𝑟,𝑖)|
1
𝐷 ) decaying sub-exponentially with rate 𝜏 = 1/𝐷, for all 𝑖 ∈ Λ. We also obtain the

parameter 𝜁 in Eq. (4.18), which can be calculated for a fixed 𝑟. For an arbitrary 𝑟, we have∑︁
𝑟,𝑗:𝐵(𝑟,𝑗)∋𝑖

𝑣𝑗‖𝑎𝐵(𝑟,𝑗)‖ ≤ 𝑐5𝑟
𝐷−1

∑︁
𝑗:𝐵(𝑟,𝑗)∋𝑖

𝑣𝑗𝑒
−𝑐′4𝑟/2 ≤

(︂
max
𝑗∈Λ

𝑣𝑗

)︂
𝑐5𝑐𝐵𝑟

2𝐷−1𝑒−𝑐
′
4𝑟/2

≤ Θ(𝛽2𝐷+1)

(︂
max
𝑗∈Λ

𝑣𝑗

)︂
,
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where we define 𝑐𝐵 such that |𝐵(𝑟, 𝑗)| ≤ 𝑐𝐵𝑟
𝐷 and we used 𝑐5 = 𝒪(𝛽2). This completes the

representation and shows that ̃︁𝑊 is a
(︀
1/𝐷,𝒪(1),𝒪(1/𝛽),𝒪(𝛽2𝐷+1) (max𝑗∈Λ 𝑣𝑗)

)︀
-quasi-local.

4.10.5 Proof of Lemma 111

Recall that the goal in this section is to prove that for ̃︁𝑊 defined in Lemma 100 we have

max
𝑖∈Λ

tr[(̃︁𝑊(𝑖))
2𝜂] =

Θ(1)

(𝛽 log(𝛽) + 1)2𝐷+2

(︂
max
𝑖∈Λ

𝑣2𝑖

)︂
,

where 𝜂 is the maximally mixed state. In this direction, we will now prove that

max
𝑖∈Λ

‖̃︁𝑊(𝑖)
√
𝜂‖𝐹 ≥ 𝑐7

(𝛽 log(𝛽) + 1)𝐷+1
max
𝑖∈Λ

(|𝑣𝑖|), (4.155)

for a constant 𝑐7 = 𝒪(1). For convenience, let us define argmax𝑖∈Λ|𝑣𝑖| = 𝑖+, or equivalently
|𝑣𝑖+ | = max𝑖∈Λ |𝑣𝑖|. In the following, we prove the inequality (4.155) for ‖̃︁𝑊(𝑖+)

√
𝜂‖𝐹 instead of

max𝑖∈Λ ‖̃︁𝑊(𝑖)
√
𝜂‖𝐹 . By using the inequality max𝑖∈Λ ‖̃︁𝑊(𝑖)‖𝐹 ≥ ‖̃︁𝑊(𝑖+)‖𝐹 , we obtain the main

statement. We denote the ball region 𝐵(𝑟, 𝑖+) by 𝐵𝑟 for the simplicity, where 𝑟 is fixed later. Let
us consider ̃︁𝑊 [𝐵𝑟] which is defined as follows:

̃︁𝑊 [𝐵𝑟] :=

∫︁ ∞

−∞
𝑓𝛽(𝑡)𝑒

−𝑖𝐻𝑡𝑊 [𝐵𝑟]𝑒
𝑖𝐻𝑡𝑑𝑡, 𝑊 [𝐵𝑟] :=

∑︁
𝑖∈𝐵𝑟

𝑣𝑖𝐸𝑖. (4.156)

Sincẽ︁𝑊 [𝐵𝑟] is obtained from𝑊 [𝐵𝑟] in an equivalent manner as̃︁𝑊 is obtained from𝑊 , the following
claim follows along the same lines as Theorem 102. We skip the very similar proof.

Claim 115. It holds that

‖̃︁𝑊 [𝐵𝑟]‖2𝐹 ≥ 𝒟Λ

𝑐5[𝛽 log(𝑟) + 1]2

∑︁
𝑖∈𝐵𝑟

𝑣2𝑖 ,

where 𝑐5 is a constant of 𝒪(1).

Since the new operator ̃︁𝑊 [𝐵𝑟] well approximates the property of ̃︁𝑊 around the site 𝑖+, as long
as 𝑟 is sufficiently large, we expect that ̃︁𝑊 [𝐵𝑟](𝑖+) and ̃︁𝑊(𝑖+) are close to each other. The claim
below makes this intuition rigorous:

Claim 116. It holds that

‖̃︁𝑊(𝑖+) −̃︁𝑊 [𝐵𝑟](𝑖+)‖ ≤ 𝑐1|𝑣𝑖+ |𝛽𝐷𝑒−𝑐2𝑟/𝛽 , (4.157)

where 𝑐1, 𝑐2 are constants of 𝒪(1).

This claim implies that the contribution of all the terms in ̃︁𝑊(𝑖+) which are not included in the
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𝐵𝑟 ball around 𝑖+ decays exponentially with 𝑟. Hence,

‖̃︁𝑊(𝑖+)‖𝐹 = ‖̃︁𝑊(𝑖+) −̃︁𝑊 [𝐵𝑟](𝑖+) +̃︁𝑊 [𝐵𝑟](𝑖+)‖𝐹 ≥ ‖̃︁𝑊 [𝐵𝑟](𝑖+)‖𝐹 − ‖̃︁𝑊(𝑖+) −̃︁𝑊 [𝐵𝑟](𝑖+)‖𝐹
≥ ‖̃︁𝑊 [𝐵𝑟](𝑖+)‖𝐹 −

√︀
𝒟Λ‖̃︁𝑊(𝑖+) −̃︁𝑊 [𝐵𝑟](𝑖+)‖

≥ ‖̃︁𝑊 [𝐵𝑟](𝑖+)‖𝐹 −
√︀

𝒟Λ𝑐1|𝑣𝑖+ |𝛽𝐷𝑒−𝑐2𝑟/𝛽 , (4.158)

where we use ‖̃︁𝑊(𝑖+) −̃︁𝑊 [𝐵𝑟](𝑖+)‖𝐹 ≤ √𝒟Λ‖̃︁𝑊(𝑖+) −̃︁𝑊 [𝐵𝑟](𝑖+)‖ in the second inequality. Second,
we consider the approximation of ̃︁𝑊 [𝐵𝑟] by ̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ] which are supported on 𝐵𝑟′ :

̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ] := tr𝐵c
𝑟′
(̃︁𝑊 [𝐵𝑟])⊗

1𝐵c
𝑟′

𝑑|𝐵
c
𝑟′ |
. (4.159)

Because of the quasi-locality of ̃︁𝑊 , we expect ̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ] ≈ ̃︁𝑊 [𝐵𝑟] for 𝑟′ ≫ 𝑟. This is shown in the
following lemma:

Claim 117. The norm difference between ̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ] and ̃︁𝑊 [𝐵𝑟] is upper-bounded as

‖̃︁𝑊 [𝐵𝑟]−̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ]‖ ≤ 𝑐3|𝑣𝑖+ |𝑟𝐷𝛽𝑒−𝑐4|𝑟
′−𝑟|/𝛽 (4.160)

and

‖̃︁𝑊 [𝐵𝑟](𝑖+) −̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ](𝑖+)‖ ≤ 2𝑐3|𝑣𝑖+ |𝑟𝐷𝛽𝑒−𝑐4|𝑟
′−𝑟|/𝛽, (4.161)

where 𝑐3, 𝑐4 are constants of 𝒪(1).

The claim reduces the inequality (4.158) to

‖̃︁𝑊(𝑖+)‖𝐹 ≥ ‖̃︁𝑊 [𝐵𝑟](𝑖+)‖𝐹 −
√︀

𝒟Λ𝑐1|𝑣𝑖+ |𝛽𝐷𝑒−𝑐2𝑟/𝛽

≥ ‖̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ](𝑖+)‖𝐹 −
√︀

𝒟Λ‖̃︁𝑊 [𝐵𝑟](𝑖+) −̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ](𝑖+)‖ −
√︀

𝒟Λ𝑐1|𝑣𝑖+ |𝛽𝐷𝑒−𝑐2𝑟/𝛽

≥ ‖̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ](𝑖+)‖𝐹 −
√︀

𝒟Λ𝑐1|𝑣𝑖+ |𝛽𝐷𝑒−𝑐2𝑟/𝛽 − 2
√︀

𝒟Λ𝑐3|𝑣𝑖+ |𝑟𝐷𝛽𝑒−𝑐4(𝑟
′−𝑟)/𝛽. (4.162)

Next, we relate the norm of ̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ](𝑖+) to that of ̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ] using Claim 87. By recalling that̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ](𝑖+) is supported on 𝐵𝑟′ , this gives

‖̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ](𝑖+)‖𝐹 ≥ 1

|𝐵𝑟′ |
‖̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ]‖𝐹 , (4.163)

which reduces the inequality (4.162) to

‖̃︁𝑊(𝑖+)‖𝐹 ≥ 1

|𝐵𝑟′ |
‖̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ]‖𝐹 −

√︀
𝒟Λ𝑐1|𝑣𝑖+ |𝛽𝐷𝑒−𝑐2𝑟/𝛽 − 2

√︀
𝒟Λ𝑐3|𝑣𝑖+ |𝑟𝐷𝛽𝑒−𝑐4(𝑟

′−𝑟)/𝛽

≥ 1

|𝐵𝑟′ |
‖̃︁𝑊 [𝐵𝑟]‖𝐹 −

√︀
𝒟Λ𝑐1|𝑣𝑖+ |𝛽𝐷𝑒−𝑐2𝑟/𝛽 − (2 + 1/|𝐵𝑟′ |)

√︀
𝒟Λ𝑐3|𝑣𝑖+ |𝑟𝐷𝛽𝑒−𝑐4(𝑟

′−𝑟)/𝛽,

(4.164)

where in the second inequality we apply Claim 117 to ‖̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ]‖𝐹 . Finally, we use the lower
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bound given in Claim 115 and the inequality
∑︀

𝑖∈𝐵𝑟
𝑣2𝑖 ≥ 𝑣2𝑖+ (since 𝑖+ ∈ 𝐵𝑟) to obtain

‖̃︁𝑊 [𝐵𝑟]‖2𝐹 ≥ 𝒟Λ

𝑐5[𝛽 log(𝑟) + 1]2
𝑣2𝑖+ .

This reduces the inequality (4.164) to the following:

‖̃︁𝑊(𝑖+)‖𝐹√𝒟Λ
≥ |𝑣𝑖+ |
𝑐8 (𝑟′)

𝐷√
𝑐5[𝛽 log(𝑟) + 1]

− 𝑐1|𝑣𝑖+ |𝛽𝐷𝑒−𝑐2𝑟/𝛽 − 3𝑐3|𝑣𝑖+ |𝑟𝐷𝛽𝑒−𝑐4(𝑟
′−𝑟)/𝛽,

where we used |𝐵𝑟′ | ≤ 𝑐8 (𝑟
′)𝐷, for some constant 𝑐8. By choosing 𝑟′ = 2𝑟 and 𝑟 = Θ(1)·𝐷𝛽 log(𝛽)+

1, we have

‖̃︁𝑊(𝑖+)‖𝐹√𝒟Λ
= ‖̃︁𝑊(𝑖+)

√
𝜂‖𝐹 ≥ 𝑐7|𝑣𝑖+ |

(𝛽 log(𝛽) + 1)𝐷+1
, (4.165)

for some constant 𝑐7. This completes the proof. □

Proof of Claims 116, 117

Proof of Claim 116. Recall that the goal is to prove

‖̃︁𝑊(𝑖+) −̃︁𝑊 [𝐵𝑟](𝑖+)‖ ≤ 𝑐1|𝑣𝑖+ |𝛽𝐷𝑒−𝑐2𝑟/𝛽

for constants 𝑐1, 𝑐2. We start from the integral representation of ̃︁𝑊(𝑖+):

̃︁𝑊(𝑖+) = ̃︁𝑊 −
∫︁
𝑑𝜇(𝑈𝑖+)𝑈

†
𝑖+
̃︁𝑊𝑈𝑖+ , (4.166)

where 𝜇(𝑈𝑖+) is the Haar measure for unitary operator 𝑈𝑖+ which acts on the 𝑖+th site. This yields

̃︁𝑊(𝑖+) −̃︁𝑊 [𝐵𝑟](𝑖+) = ̃︁𝑊 [𝐵c
𝑟 ]−

∫︁
𝑑𝜇(𝑈𝑖+)𝑈

†
𝑖+
̃︁𝑊 [𝐵c

𝑟 ]𝑈𝑖+ . (4.167)

We thus obtain

‖̃︁𝑊(𝑖+) −̃︁𝑊 [𝐵𝑟](𝑖+)‖ ≤ sup
𝑈𝑖+

‖[𝑈𝑖+ ,̃︁𝑊 [𝐵c
𝑟 ]]‖

≤
∫︁ ∞

−∞
𝑓𝛽(𝑡)

∑︁
𝑗∈𝐵c

𝑟

|𝑣𝑗 | sup
𝑈(𝑖)

‖[𝑈𝑖+ , 𝑒−𝑖𝐻𝑡𝐸𝑗𝑒𝑖𝐻𝑡]‖𝑑𝑡

≤ 𝑓 · |𝑣𝑖+ |
∑︁
𝑗∈𝐵c

𝑟

∫︁ ∞

−∞
𝑓𝛽(𝑡)min(𝑒−𝑐(dist(𝑖+,𝑗)−𝑚𝑗−𝑣LR𝑡), 1)𝑑𝑡, (4.168)

where we use |𝑣𝑗 | ≤ |𝑣𝑖+ | and the Lieb-Robinson bound (Fact 81) for the last inequality, and 𝑚𝑗 is
the radius of the support for 𝐸𝑗 (see also Sec. 4.10.4). Because the function 𝑓𝛽(𝑡) decays as 𝑒−𝒪(𝑡/𝛽)
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and dist(𝑖+, 𝑗) ≥ 𝑟 for 𝑗 ∈ 𝐵c
𝑟 , we have

|𝑣𝑖+ |
∑︁
𝑗∈𝐵c

𝑟

𝑓𝑒𝑐𝑚𝑗

∫︁ ∞

−∞
𝑓𝛽(𝑡)min(𝑒−𝑐(dist(𝑖+,𝑗)−𝑣LR𝑡), 1)𝑑𝑡 ≤ 𝑐1|𝑣𝑖+ |𝛽𝐷𝑒−𝑐2𝑟/𝛽 . (4.169)

This completes the proof. ⊓⊔

Proof of Claim 117. Recall that we wanted to show

‖̃︁𝑊 [𝐵𝑟]−̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ]‖ ≤ 𝑐3|𝑣𝑖+ |𝑟𝐷𝛽𝑒−𝑐4|𝑟
′−𝑟|/𝛽.

In order to prove this, we also utilize the integral representation of ̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ]:

̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ] :=

∫︁
𝑑𝜇(𝑈𝐵c

𝑟′
)𝑈 †

𝐵c
𝑟′
̃︁𝑊 [𝐵𝑟]𝑈𝐵c

𝑟′
, (4.170)

which yields an upper bound of ‖̃︁𝑊 [𝐵𝑟]−̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ]‖ as

‖̃︁𝑊 [𝐵𝑟]−̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ]‖ ≤
∫︁
𝑑𝜇(𝑈𝐵c

𝑟′
)‖[̃︁𝑊 [𝐵𝑟], 𝑈𝐵c

𝑟′
]‖. (4.171)

From the definition (4.156) of ̃︁𝑊 [𝐵𝑟] and the Lieb-Robinson bound (Fact 81), we obtain∫︁
𝑑𝜇(𝑈𝐵c

𝑟′
)‖[̃︁𝑊 [𝐵𝑟], 𝑈𝐵c

𝑟′
]‖ ≤

∫︁
𝑑𝜇(𝑈𝐵c

𝑟′
)

∫︁ ∞

−∞
𝑓𝛽(𝑡)

∑︁
𝑗∈𝐵𝑟

|𝑣𝑗 | · ‖[𝑒−𝑖𝐻𝑡𝐸𝑗𝑒𝑖𝐻𝑡, 𝑈𝐵c
𝑟′
]‖

≤ 𝑓 max
𝑗∈𝐵𝑟

(Supp(𝐸𝑗))|𝑣𝑖+ |
∫︁ ∞

−∞
𝑓𝛽(𝑡)

∑︁
𝑗∈𝐵𝑟

min(𝑒−𝑐(𝑟
′−𝑟−𝑚𝑗−𝑣LR𝑡), 1)𝑑𝑡

≤ 𝑐′3|𝑣𝑖+ | · |𝐵𝑟| · 𝛽𝑒−𝑐4|𝑟
′−𝑟|/𝛽, (4.172)

with 𝑐′3 a constant of 𝒪(1), where Supp(𝐸𝑗) ∝ 𝑚𝐷
𝑗 = 𝒪(1) is the support of 𝐸𝑗 . Since |𝐵𝑟| ∝ 𝑟𝐷,

we obtain the main inequality (4.160). Now, since

̃︁𝑊 [𝐵𝑟](𝑖+) = ̃︁𝑊 [𝐵𝑟]−
∫︁
𝑑𝜇(𝑈𝑖+)𝑈

†
𝑖+
̃︁𝑊 [𝐵𝑟]𝑈𝑖+

and ̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ](𝑖+) = ̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ]−
∫︁
𝑑𝜇(𝑈𝑖+)𝑈

†
𝑖+
̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ]𝑈𝑖+ ,

we obtain the second inequality (4.161) due to

‖̃︁𝑊 [𝐵𝑟](𝑖+) −̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ](𝑖+)‖ ≤ 2‖̃︁𝑊 [𝐵𝑟]−̃︁𝑊 [𝐵𝑟, 𝐵𝑟′ ]‖.

This completes the proof. ⊓⊔
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Chapter 5

Thermal phase transition versus
computational hardness

Chapter summary: In this work, we study two related problems regarding quantum many-body
systems: developing approximation algorithms for the partition function of these systems, and
characterization of the thermal phase transition.

(1) We extend the scope of a recent approach due to Barvinok for solving classical counting
problems [Bar16a] to quantum many-body systems. This allows us to find a deterministic
quasi-polynomial time classical algorithm that estimates the partition function of quantum
systems at temperatures above the phase transition point. We also find an algorithm for the
anisotropic XXZ model in the ferromagnetic regime at any temperature over arbitrary graphs.
Previously, a randomized algorithm was known only for the ferromagnetic XY model [BG17]
using different techniques.

(2) We show that the partition function of a geometrically-local Hamiltonian does not have any
complex zeros near the real axis above a constant temperature which depends only on the
geometric properties of the Hamiltonian.

(3) We prove that in a system of 𝑛 qudits at temperatures above the phase transition point, where
the complex zeros of the partition function are far from the real axis, the correlations between
two observables whose distance is Ω(log(𝑛)) decay exponentially. We can improve the factor
of log(𝑛) to a constant when the Hamiltonian has commuting terms (which includes classical
Hamiltonians) or is on a 1D chain. These results build on a work of Dobrushin and Shlosman
on translationally-invariant classical spin systems [DS87].

This chapter is based on:

[HMS20] Aram W. Harrow, Saeed Mehraban, and Mehdi Soleimanifar. Classical algorithms, cor-
relation decay, and complex zeros of partition functions of quantum many-body systems. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pages 378–386, 2020.

5.1 Introduction

In thermal equilibrium, a quantum system characterized by a local Hamiltonian 𝐻 is in the Gibbs
(or thermal) state 𝜌 = exp(−𝛽𝐻)/𝑍𝛽(𝐻), where 𝛽 is the inverse of temperature and 𝑍𝛽(𝐻) =
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tr[exp(−𝛽𝐻)] is the partition function of the system. Many useful statistical properties of the
system including the free energy and entropy can be obtained from the partition function and its
derivatives. However, exactly evaluating the partition function is known to be #P-hard. This
motivates devising efficient algorithms that approximately evaluate this quantity.

Our starting point for finding such approximation algorithms is based on the observation that
the phenomenon of the thermal phase transition is an obstacle for finding efficient algorithms.
Consider a quantum many-body system that consists of 𝑛 qudits interacting according to a local
Hamiltonian 𝐻. As the temperature of this system increases, meaning 𝛽 → 0, the Gibbs state
𝜌 approaches the maximally mixed state 1/𝑑𝑛. Thus, in this case, finding the partition function
is trivial since 𝑍𝛽=0(𝐻) = 𝑑𝑛. On the other hand, this problem becomes significantly harder at
lower temperatures. In particular, as 𝛽 → ∞, the Gibbs state approaches the ground space of the
Hamiltonian 𝐻 and the free energy 𝐹𝛽(𝐻) = −1/𝛽 log𝑍𝛽(𝐻) approaches the ground energy which
is known to be QMA-hard to estimate. Hence, we see that the computational hardness of estimating
the partition function (or equivalently the free energy) depends on the inverse temperature 𝛽 and
goes through a transition from being trivial to QMA-hard as 𝛽 increases.

In statistical physics, however, another transition occurs as 𝛽 increases, namely, the transition
in the phase of the system. At the thermal phase transition point, certain physical properties of
the system undergo an abrupt change. Does the computational hardness of estimating the partition
function also undergo an abrupt change at the same transition point? This question has been studied
in classical Ising or hard-core model, and the answer is known to be affirmative. For these systems,
there are efficient algorithms for estimating the partition function when 𝛽 < 𝛽𝑐 [Wei06, SST14]
whereas by a result of Sly and Sun [SS12, Sly10] the same problem is NP-hard under a randomized
reduction for 𝛽 > 𝛽𝑐.

Hence, it appears that the thermal phase transition poses a barrier to obtaining efficient al-
gorithms, and we need a framework for characterizing this phenomenon. There are at least two
methods for such purpose. One, which is the basis of our algorithm, stems from analyzing the locus
of the complex zeros of the partition function. Another seemingly different method involves the
decay of correlations in the Gibbs state of the system. In this work, we study the interface between
these two methods and their algorithmic implications for interacting quantum systems.

5.1.1 Our main results

Approximation algorithm from the complex zeros of quantum partition functions

In general, the partition function can be written as 𝑍𝛽(𝐻) =
∑︀

𝑘 exp(−𝛽𝐸𝑘), where each 𝐸𝑘 is
an eigenvalue of the Hamiltonian 𝐻. If 𝛽 is real, the terms exp(−𝛽𝐸𝑘) are all strictly positive,
and hence the partition function 𝑍𝛽(𝐻) is strictly positive itself. However, this changes when 𝛽
is allowed to be complex. In that case, the terms exp(−𝛽𝐸𝑘) acquire complex phases that when
added together might cancel each other and make the partition function zero. We call the solutions
of 𝑍𝛽(𝐻) = 0 for 𝛽 ∈ C, the complex zeros of the partition function.

The significance of these zeros becomes more clear if one looks at the free energy 𝐹𝛽(𝐻). The
zeros of 𝑍𝛽(𝐻) are the singularities of log𝑍𝛽(𝐻) = −𝛽𝐹𝛽(𝐻). Since 𝑍𝛽(𝐻) ̸= 0 when 𝛽 is real, we
see that all these singularities are located in the complex plane and the free energy is analytic near
the real axis. As the number of particles 𝑛 grows, the number and location of these points change.
Perhaps rather surprisingly, some of these singularities approach the real axis in the limit of a large
number of particles, 𝑛→ ∞. The first point on the positive real axis where these zeros converge in
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the large 𝑛 limit is called the critical inverse temperature and denoted by 𝛽𝑐 (see Figure 5-1). This
critical temperature separates different phases of matter and important quantities such as the free
energy become non-analytic in the vicinity of 𝛽𝑐. The study of these complex zeros in connection
with the phase transition phenomenon in classical Ising models was initiated by Lee and Yang [LY52]
and later extended by Fisher [Fis65]. This approach is one of the few rigorous methods available in
the theory of phase transitions.

One can go beyond partition functions and consider complex roots of high-degree polynomials
that appear in combinatorics such as estimating the permanent of a matrix. Recently, there has
been a surge of interest in studying these complex zeros in theoretical computer science due to their
algorithmic applications. In particular, a new approach based on the truncated Taylor expansion
introduced by Barvinok [Bar16a] directly connects the locus of the complex zeros to approximation
algorithms for counting problems. In this work, we extend the scope of this method by applying it
to quantum many-body systems.

We first state the condition on the location of zeros that we use in our approximation algorithm.
Under this condition, it is guaranteed that the inverse temperature 𝛽 at which the partition function
is estimated is connected to 𝛽 = 0 by a path in the complex plane that avoids the complex zeros
along its way with a significant margin. Even though this algorithm works for any such path, we
restrict our attention to the physically-relevant case when this zero-free region contains the real
𝛽-axis. Hence, we define:

Definition 118. The 𝛿-neighborhood of the interval [0, 𝛽] for some 𝛽 ∈ R+ is a region of the
complex plane defined as Ω𝛿,𝛽 = {𝑧 ∈ C : ∃𝑧′ ∈ [0, 𝛽], |𝑧− 𝑧′| ≤ 𝛿} (see Figure 5-1 for an example of
such a region).

Definition 119 (Analyticity condition, informal version of Conditions 1’ and 1). For a system of
𝑛 particles with a local Hamiltonian 𝐻, we define:

1. A 𝛿-neighborhood Ω𝛿,𝛽 of the interval [0, 𝛽] (see Definition 118) is called zero-free if 𝛿 is some
constant and ∀𝛽′ ∈ Ω𝛿,𝛽 the partition function 𝑍𝛽′(𝐻) ̸= 0 and moreover, | log𝑍𝛽′(𝐻)| ≤ 𝑂(𝑛).

2. Equivalently, the free energy 𝐹𝛽(𝐻) is called 𝛿-analytic along [0, 𝛽] if Ω𝛿,𝛽 is a zero-free region.

While the condition | log𝑍𝛽(𝐻)| ≤ 𝑂(𝑛) is satisfied on the real 𝛽 axis, it may not hold in the
complex plane close to the zeros of 𝑍𝛽(𝐻). If the partition function is a polynomial, which is the
case for the classical Ising model, this condition follows when 𝛽 is constantly far from the complex
zeros. In general, though, we need to include this as an independent assumption.

We now state our first result which shows that the framework of the truncated Taylor expansion
[Bar16a] can be naturally extended to also estimate quantum partition functions.

Theorem 120 (Informal version of Theorem 136). There is a deterministic classical algorithm that
takes a local Hamiltonian 𝐻 and a number 𝜀 as inputs, runs in time 𝑛𝑂(log(𝑛/𝜀)), and outputs a value
within 𝜀-multiplicative error of the partition function 𝑍𝛽(𝐻) at inverse temperature 𝛽 as long as the
free energy is 𝛿-analytic along the [0, 𝛽] line (see Definition 119) for some 𝛿 = 𝑂(1).

Given the result of Theorem 120, the main challenge is to find the zero-free region or the critical
point 𝛽𝑐 for a Hamiltonian 𝐻. This can be achieved in certain systems such as the classical Ising
model by using their specific structure [LSS19a, BS17a]. In general, though, it is a hard problem
to exactly find this region given an arbitrary Hamiltonian. One can compare this with when a
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𝑂(1) 𝑂(1)

𝛽 = 0 𝛽

Im(𝛽)

Re(𝛽)

𝑂(1)

𝛽,

Figure 5-1: The location of complex zeros of the partition function, the critical point 𝛽𝑐, and the
zero-free region near the real axis (as in Definition 119). The free energy is analytic in this region.

1D quantum system is assumed to have a constant spectral gap. Under this condition, there is an
efficient algorithm for estimating the ground energy. However, it has been shown that validating
this condition, i.e. determining if a Hamiltonian is gapped or not, is undecidable in the worst case
[CPGW15].

In our next result, we show that for any geometrically-local Hamiltonian 𝐻, there exists a zero-
free disk of radius 𝛽0 around 𝛽 = 0 for some constant 𝛽0 ≤ 𝛽𝑐 which depends only on the geometric
parameters of 𝐻. Here, we say a Hamiltonian is geometrically local if the local terms in 𝐻 act on
neighboring qudits that are located on a 𝐷-dimensional lattice Λ ⊂ Z𝐷.

Theorem 121 (Informal version of Theorem 137). There exists a real constant 𝛽0 such that for all
𝛽 ∈ C with |𝛽| ≤ 𝛽0, the partition function 𝑍𝛽(Λ) of a geometrically-local Hamiltonian 𝐻 does not
vanish, and furthermore,

⃒⃒
log |𝑍𝛽(Λ)|

⃒⃒
≤ 𝑂(𝑛).

As mentioned earlier, without focusing on a specific family of Hamiltonians, improving the zero-
free region in Theorem 121 seems implausible. Hence, an alternative approach is to show the absence
of zeros at a given 𝛽 by assuming the validity of other conditions such as the decay of correlations.
This along with other results in this direction is the subject of the next section.

The decay of correlations in the Gibbs state

Another signature of the thermal phase transition is the appearance of long-range order in the
system. In the example of a magnetic system, below the phase transition in the ferromagnetic
phase (also called the ordered phase), distant spins are correlated and point in the same direction,
whereas in the paramagnetic phase (also known as the disordered phase), the correlations between
disjoint parts of the system decay exponentially with their distance. More precisely, we define the
exponential decay of correlations as

Definition 122 (Correlation decay condition, informal version of Condition 2). The Gibbs state
𝜌𝛽(𝐻) of a geometrically-local Hamiltonian 𝐻 at inverse temperature 𝛽 exhibits an exponential
decay of correlations if for any two disjoint observables 𝑂1 and 𝑂2 and any region 𝐵 such that
supp(𝑂1), supp(𝑂2) ⊂ 𝐵 there exist constants 𝜉 and 𝑐 such that⃒⃒

tr [𝜌𝛽(𝐻)𝑂1𝑂2]− tr [𝜌𝛽(𝐻)𝑂1] tr [𝜌𝛽(𝐻)𝑂2]
⃒⃒
≤ 𝑐|𝐵|||𝑂1||||𝑂2||𝑒−dist(𝑂1,𝑂2)/𝜉. (5.1)
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What is the relation between the decay of correlations and the complex zeros of the partition
function? Note that the former involves correlations in the system at a real temperature while the
latter concerns the complex temperature features of the partition function. Could it be that these
two apparently distinct characterizations are indeed equivalent?

Besides its physical significance, the correlation decay property is also crucially used in many
approximation algorithms both in classical [Wei06] and quantum [BK16] settings. Hence, we see that
there are different approaches for estimating the partition function: using the absence of complex
zeros versus relying on the decay of correlations. A third approach is to use Markov chain Monte
Carlo (MCMC) sampling algorithms for this purpose. An important question is whether the range
of temperatures that these widely different approaches cover is the same.

The equivalence between the exponential decay of correlations (fast mixing in space) and fast
convergence of MCMC algorithms (fast mixing in time) has been established before for classical
systems [DSVW04, Wei04]. Here, we consider the equivalence between the absence of complex
zeros and the exponential decay of correlations. This question has been recently raised in [LSS19a]
where one direction of this equivalence was proved for the special case of the classical Ising model
[LSS19a].

We study this question in the context of quantum many-body systems, but as a special case,
our results apply to classical systems. We build on a work of Dobrushin and Shlosman [DS87] who
proved this equivalence for arbitrary translationally-invariant classical systems. We are not aware
of any application of the proof techniques in this paper or [DS87] that appear in the recent results
on counting problems. Hence, the methods developed here might be of independent interests.

In our next result, we show that the absence of complex zeros around some real 𝛽 implies the
exponential decay of correlations at that 𝛽.

Theorem 123 (Informal version of results in Section 5.5). Let 𝜌𝛽(𝐻) be the Gibbs state of a
geometrically-local Hamiltonian at inverse temperature 𝛽 in the zero-free region Ω𝛿,𝛽 (given in Defi-
nition 119) for some constant 𝛿 . This state has the decay of correlation property as in Definition 122
in any of the following cases:

(i.) The distance between the observables 𝑂1 and 𝑂2 is at least Ω(log 𝑛)1,

(ii.) The Hamiltonian 𝐻 is the sum of mutually commuting local terms, or

(iii.) The Hamiltonian 𝐻 is defined on a 1D chain.

The class of commuting Hamiltonians includes important examples such as stabilizer Hamilto-
nians like the Toric code, Color code, or Levin-Wen model [LW05].

Proving the converse of Theorem 123 turns out to be more challenging. Nevertheless, we can
give evidence for this direction by generalizing the result of [DS87] to classical systems that are not
translationally invariant, and also quantizing certain steps in the proof. By fully establishing this
equivalence, one could rigorously confirm the physical intuition that a quantum system enters the
disordered phase at the point where the free energy becomes analytic.

Theorem 124 (Informal version of Theorem 153). Let 𝐻 be a geometrically-local Hamiltonian of
a classical spin system, i.e. the local terms 𝐻𝑖 are all diagonal in the same product basis. For this
system, the exponential decay of correlations given in Definition 122 implies the absence of zeros
near the real axis as in Definition 119.

1In other words, we bound the correlation between 𝑂1 and 𝑂2 by 𝑐𝑛||𝑂1||||𝑂2||𝑒−dist(𝑂1,𝑂2)/𝜉
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Two-local Hamiltonians and Lee-Yang zeros

For our last result, we switch gears and focus on a specific family of 2-local Hamiltonians. We
again use the idea of extrapolation, but this time, our extrapolation parameter instead of 𝛽 is
the strength of the external magnetic field applied to the system in the 𝑧-direction. The physical
motivation is that when the system is subject to a large external field in a specific direction (the
𝑧-direction in our case), all spins align themselves in that direction, and estimating the properties of
the system becomes trivial. On the other hand, as we move to smaller fields, the other interaction
terms between the particles gain significance, making the problem non-trivial. Our result is an
approximation algorithm for the quantum XXZ model with the following Hamiltonian:

Definition 125. The anisotropic XXZ Hamiltonian on an interaction graph 𝐺 = (𝑉,𝐸) is given
by

𝐻(𝜇) = −
∑︁

(𝑖,𝑗)∈𝐸

(︀
𝐽𝑖𝑗(𝑋𝑖𝑋𝑗 + 𝑌𝑖𝑌𝑗) + 𝐽𝑧𝑧𝑖𝑗 𝑍𝑖𝑍𝑗

)︀
− 𝜇

∑︁
𝑖∈𝑉

𝑍𝑖. (5.2)

We find an approximation algorithm for this model. This is stated in the following theorem.
This model is outside the family of ferromagnetic systems considered previously in [BG17] and to
the best of our knowledge no efficient algorithm was previously known for estimating its partition
function.

Theorem 126 (Informal version of Theorem 169). There is a deterministic algorithm that runs
in 𝑛𝑂(log(𝑛/𝜀)) time and outputs an 𝜀-multiplicative approximation to the partition function of the
anisotropic XXZ model (see Definition 125) in the ferromagnetic regime, i.e. when 𝐽𝑧𝑧𝑖𝑗 ≥ |𝐽𝑖𝑗 |, and
𝜇 is an arbitrary constant.

5.1.2 Technical contribution and sketch of our proofs

Sketch of the proof for Theorem 123 The technique used in the proof of Theorem 123 is
inspired by the extrapolation idea of Theorem 120 and also the proof of the similar statement for
the classical systems due to [DS87].

One major issue that appears in the proof of this Theorem and Theorem 124 is the handling of
entangled boundary conditions. To address this, we consider the Gibbs state after a subset of spins
have been measured. This means we work with partition functions of the form tr[exp(−𝛽𝐻)𝑁 ] for
some positive semi-definite operator𝑁 . We then define a function 𝑓(𝛽) that measures the correlation
between disjoint observables 𝑂1 and 𝑂2. This function is defined in a slightly different way than
the covariance form in (5.1) and is tuned to have specific properties. In particular, we show that at
𝛽 = 0, the value of this function is zero, i.e. 𝑓(0) = 0. This is expected intuitively since the system
is in the maximally mixed state at 𝛽 = 0 and particles are distributed independently at random.
However, we further show that the low order derivatives of this function up to 𝑂(dist(𝑂1, 𝑂2)) are
all zero at 𝛽 = 0, i.e.

𝑑𝑘𝑓(𝛽)

𝑑𝛽𝑘

⃒⃒⃒
𝛽=0

= 0, for 𝑘 = 0, 1, . . . , 𝑂(dist(𝑂1, 𝑂2)). (5.3)

Hence, this function looks very flat around the origin. Additionally, we prove that 𝑓(𝛽) is an
analytic function in the zero-free region. Finally, we show that this together with the constraints on
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the derivatives imply that the value of 𝑓(𝛽), which shows how correlated 𝑂1 and 𝑂2 are, remains
exponentially small when moving from the origin to a constant 𝛽.

This gives us an upper bound ∝ 𝑛 exp(−dist(𝑂1, 𝑂2)/𝜉) on the amount of correlation. The extra
factor of 𝑛 makes this bound exponentially small when dist(𝑂1, 𝑂2) = Ω(log𝑛).

Remark 127. Even with the extra factor of 𝑛, our bound remains useful for algorithmic applications
such as in [BK16]. There one needs to split the system into computationally tractable smaller pieces
and solve the problem for those pieces locally. The error of this strategy can be bounded using the
exponential decay of correlations. To keep this error less than 1/ poly(𝑛), one needs to choose the
distances to be 𝑂(log 𝑛) which is the regime that our result covers.

In classical systems, one can remove the constraint dist(𝑂1, 𝑂2) = Ω(log𝑛) by using the Markov
property of the Gibbs states. This property is known not to (exactly) hold in the quantum case.
We can get around this issue in certain instances. This includes when the Hamiltonian consists of
commuting terms or when it is defined on a 1D chain. In both cases, using either the commutativity
of local terms or quantum belief propagation [Has07b] (refer to Proposition 131 in the body for the
precise statement), we show that by removing the interaction terms acting on particles that are
far from the observables 𝑂1 and 𝑂2, the correlations between 𝑂1 and 𝑂2 do not change by much.
Hence, the system size reduces to the number of particles in the vicinity of the two observables.
This number replaces the prefactor 𝑛 we had before and is negligible compared to the exponential
factor exp(−dist(𝑂1, 𝑂2)/𝜉). Thus, for these systems, the decay of correlations holds even when
dist(𝑂1, 𝑂2) is a constant. In higher dimensions, using quantum belief propagation results in an
error proportional to the size of the boundary which restricts its application for our purpose.

Sketch of the proofs for Theorem 121 and Theorem 124 We first introduce a core idea which
plays a central role in the proofs of both Theorem 137 and Theorem 123. For ease of notation, we
denote the partition function of a geometrically-local Hamiltonian 𝐻 defined over a 𝐷-dimensional
lattice Λ ⊂ Z𝐷 by 𝑍𝛽(Λ). The particles are located on the vertices of this lattice.

In Theorem 121, our goal is to show that 𝑍𝛽(Λ) ̸= 0 inside a disk of radius 𝛽0, i.e. for 𝛽 ∈ C where
|𝛽| ≤ 𝛽0 for some constant 𝛽0. We consider a series of sublattices ∅ = Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λ𝑛 = Λ
such that each sublattice Λ𝑖 has one fewer vertex than Λ𝑖+1. By convention, we let 𝑍𝛽(∅) = 1. As
long as the sublattice Λ𝑖 has only a constant number of particles, we can always ensure 𝑍𝛽(Λ𝑖) ̸= 0
by choosing 𝛽 to be a sufficiently small constant. One might worry that by adding more particles,
the partition function vanishes.

Our main contribution is to prove this does not happen. We do so by showing that the partition
function after involving new particles does not become smaller than a constant fraction of the
partition function before adding the particles. In other words, we show there exists a constant 𝑐 > 1
such that

|𝑍𝛽(Λ𝑖+1)| ≥ 𝑐−1|𝑍𝛽(Λ𝑖)|, 𝑖 ∈ {1, 2, . . . , 𝑛− 1}. (5.4)

By repeatedly applying this bound, we obtain the following exponentially small (yet sufficiently
large for our purposes) lower bound on the partition function of the whole system

|𝑍𝛽(Λ)| ≥ 𝑐−𝑛|𝑍𝛽(Λ1)|. (5.5)

This leads to the bound given in Theorem 121. This lower bound is obtained using a method
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known as the cluster expansion. Since the local terms in the Hamiltonian of a quantum system
do not necessarily commute, applying this method becomes quite technical. The cluster expansion
that we use is due to Hastings [Has06, KGK+14], which represents the operator exp(𝐻) as sum of
products of local terms 𝐻𝑖. This allows us to express 𝑍𝛽(Λ𝑖+1) in terms of 𝑍𝛽(Λ𝑖) plus some small
correction terms that account for the interaction terms acting on the added particle. This by itself
does not lead to a bound on the partition function. Our technical contribution is to use an inductive
proof to connect such a decomposition to the lower bound (5.4) (see the proof of Theorem 137 in
the body for details).

A similar strategy is used in the proof of Theorem 124 which is based on the result of [DS87]
for translationally-invariant classical systems. We essentially show a similar bound to (5.4) on
how much the partition function can shrink after adding new particles. Here, instead of cluster
expansions, we use the exponential decay of correlations to show such a lower bound. However,
notice that the decay of correlations is a property of the system at a real 𝛽, whereas we want to
bound the absolute value of the partition function at some complex 𝛽. There are multiple steps in
the proof before we can get around this issue.

One crucial step is to reduce the proof of the analyticity of the free energy to a condition that
roughly speaking (see Proposition 155 for the details) states that changing the value of a spin in the
system only causes a small relative change in the partition function of the system even for complex
𝛽 [DS87]. This is proved by isolating the effect of this spin flip from the rest of the system using
the decay of correlations. This requires removing the imaginary part of 𝛽 for all the interactions in
the vicinity of the flipped spin and bounding the resulting error.

This overall approach involves a subtle use of the boundary conditions in the spin system. In the
quantum case, this means applying local projectors (or more generally a positive operator) to the
Gibbs state before evaluating the partition function. These projectors can in general be entangled
which makes using this proof technique more challenging for quantum systems.

Sketch of the proof for Theorem 120 The basis of our algorithm in Theorem 120 is the
following observation. It is computationally easy to find the partition function and its derivatives
at 𝛽 = 0. Note that in a system of 𝑛 qudits, 𝑍𝛽=0(𝐻) = 𝑑𝑛 and its derivatives are

𝑑𝑘𝑍𝛽(𝐻)

𝑑𝛽𝑘

⃒⃒⃒
𝛽=0

= (−1)𝑘 tr[𝐻𝑘]. (5.6)

Since the local Hamiltonian 𝐻 equals
∑︀𝑚

𝑖=1𝐻𝑖 for some 𝑚 = poly(𝑛), its 𝑘th power 𝐻𝑘 is also
the sum of 𝑛𝑂(𝑘) many local terms, i.e.

𝐻𝑘 =

𝑛𝑂(𝑘)∑︁
𝑗=1

𝐻
(𝑘)
𝑗 , (5.7)

where 𝐻(𝑘)
𝑗 is a product of 𝑘 local terms 𝐻𝑖. Each of the new terms 𝐻(𝑘)

𝑗 acts on a region that is at
most 𝑘 times larger than the support of the original terms 𝐻𝑖 which is still some constant. We can
find tr[𝐻𝑘] by adding 𝑛𝑂(𝑘) many terms like tr[𝐻

(𝑘)
𝑗 ], which allows us to compute the derivatives

(5.6) in time bounded by 𝑛𝑂(𝑘).
How can the solution at 𝛽 = 0 be used to estimate the one at some non-zero 𝛽? We use a

technique due to Barvinok [Bar16b, Bar15] that has been applied to similar counting problems.
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The idea is to extrapolate this solution at 𝛽 = 0 to find 𝑍𝛽(𝐻) at some non-zero 𝛽 where the
problem is non-trivial. The extrapolation is done simply by using a truncated Taylor expansion of
log𝑍𝛽(𝐻) at 𝛽 = 0. Since our goal is to find the partition function with some 𝜀-multiplicative error,
it is sufficient to estimate log𝑍𝛽(𝐻) within 𝜀-additive error.

The main barrier to the reliability of this algorithm is establishing the fast convergence of the
Taylor expansion. Such a Taylor expansion is only valid when log𝑍𝛽(𝐻) remains a complex-analytic
function, meaning the extrapolation is done along a path contained in the zero-free region. This is
precisely the condition stated in Definition 119. Under this assumption, the Taylor theorem along
with the bound | log𝑍𝛽(𝐻)| ≤ 𝑂(𝑛) that we get from being in the zero-free region give⃒⃒⃒⃒

⃒log𝑍𝛽(𝐻)−
𝐾−1∑︁
𝑘=0

1

𝑘!

𝑑𝑘 log𝑍𝛽(𝐻)

𝑑𝛽𝑘

⃒⃒⃒
𝛽=0

⃒⃒⃒⃒
⃒ ≤ 𝑐1𝑛𝑒

−𝑐2𝐾 (5.8)

for some constants 𝑐1, 𝑐2 (see Proposition 135 in the body for details). The running time of com-
puting the terms in this expansion is dominated by that of finding the derivatives which, as men-
tioned earlier, takes time 𝑛𝑂(𝐾). To get an additive error of 𝜀 for log𝑍𝛽(𝐻), it suffices to choose
𝐾 = 𝑂(log(𝑛/𝜀)) resulting in a quasi-polynomial time algorithm.

The running time of this algorithm depends exponentially on the distance between the zeros
and the extrapolation path. This allows us to clearly see why our algorithm fails beyond the phase
transition point. If we try to extrapolate to 𝛽 ≥ 𝛽𝑐, we need to find a zero-free region that avoids
the “armor" of zeros that are concentrated around the real axis at 𝛽𝑐. This results in a zero-free
region with a vanishing width. Hence, the running time blows up, which matches our expectation
from the NP hardness result above 𝛽𝑐 [SS12].

Sketch of the proof for Theorem 126 Thus far we have only considered complex zeros of the
partition function as a function of 𝛽. These are often called Fisher zeros [Fis65]. One can, however,
fix 𝛽 and consider the partition function as a function of other parameters in the Hamiltonian.
When that parameter is the strength of the external magnetic field denoted by 𝜇, these zeros are
called Lee-Yang zeros [LY52]. In a pioneering result, Lee and Yang showed that for ferromagnetic
systems, the locus of these zeros can be exactly determined and they are all on the imaginary axis
in the complex 𝜇-plane.

A generalization of this theorem has been proved for a class of 2-local quantum systems including
the anisotropic Heisenberg model [SF71]. The result follows by mapping the quantum system to a
classical spin system and applying a Lee-Yang type argument to the classical model.

Knowing the location of the complex zeros, we use the extrapolation algorithm to estimate the
solution at a constant 𝜇 by finding the low-order derivatives of the partition function at 𝜇 = 0. We
can apply this to the quantum XXZ model given in (5.2).

5.1.3 Previous work

Classical statistical physics and combinatorial counting

The Gibbs distribution and partition function appear naturally in combinatorial optimization, sta-
tistical physics, and machine learning. In particular, the classical Ising model has been studied
extensively within these areas. These studies have cultivated in various probabilistic and determin-
istic approximation algorithms for this model and its variants. In the following, we summarize some
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of these results.
Most notable and the first rigorously proven efficient algorithm for the Ising model is the result

of Jerrum and Sinclair [JS93] that uses a Markov chain Monte Carlo (MCMC) sampling algorithm
to estimate the partition function in the ferromagnetic regime on arbitrary graphs. More generally,
it has been shown that one can set up Markov chains for sampling from the Gibbs distribution that
mix rapidly if and only if the correlations decay exponentially. This is known as the equivalence
of mixing in time and mixing in space [DSVW04, Wei04].

Another approach uses the decay of correlations in the Gibbs distribution. This property es-
sentially allows one to decompose the interaction graph of the system into smaller computationally
tractable pieces, and then combine the results of the computation on those pieces to find the overall
partition function. In contrast to the MCMC approach, algorithms based on the decay of correla-
tions can be deterministic. This approach, for instance, has lead to efficient deterministic algorithms
for the hard-core model up to the hardness threshold [Wei06] and the antiferromagnetic Ising model
[SST14].

There is a recent conceptually different approach to estimating the partition function, which is
the basis of this work. This approach views the partition function as a high-dimensional polynomial
and uses the truncated Taylor expansion to extend the solution at a computationally easy point
to a non-trivial regime of parameters. Since its introduction [Bar16a], this method has been used
to obtain deterministic algorithms for various interesting problems such as the ferromagnetic and
antiferromagnetic Ising models [LSS19b, PR18] on bounded graphs.

The question of the relation between the analyticity of the free energy and the decay of cor-
relations was recently considered in [LSS19a] where the authors show that the correlation decay
implies the absence of Fisher zeros near the real axis. A more general statement has been proved
by Dobrushin and Shlosman [DS87] for translationally-invariant classical systems.

Quantum many-body systems

The problem of estimating the partition function and correlation decay in quantum systems has
also been studied in the past. We review some of these results here.

There are various results (e.g., [PW09, CS17]) that estimate the partition function by sampling
from the Gibbs state using a quantum computer (also known as quantum Gibbs sampling). The best
known bound on the running time of these algorithms is exponential in the number of particles.
This running time can be reduced if we assume other conditions. For example, [KBa16] shows
that a strong form of the decay of correlations implies an efficient quantum Gibbs sampler for
commuting Hamiltonians. If in addition to the decay of correlations, we add the decay of quantum
conditional mutual information, then this result can be extended to non-commuting Hamiltonians
[BK16]. Turning these quantum algorithms into classical ones results in an 𝑛polylog(𝑛) running time.
Although we cannot directly compare these results with our algorithm due to different conditions
that are imposed, the 𝑛𝑂(log𝑛) running time that we achieve outperforms that of these algorithms.

Considering the success of approximation schemes for the classical statistical problems, it is
desirable to import those results to evaluate the thermal properties of interacting quantum many-
body systems. This indeed can be done for some models like the quantum transverse field Ising
model [Bra15] or the quantum XY model [BG17] in the ferromagnetic regime using what is called
the quantum-to-classical mapping. However, this approach only works for a restricted set of Hamil-
tonians known as stoquastic Hamiltonians in which all off-diagonal matrix elements are real and
non-positive. This set is known to be restricted in many ways. For example, estimating the ground
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state energy of a general quantum Hamiltonian is QMA-complete but the problem is in AM when
we restrict to stoquastic Hamiltonians.

Establishing the decay of correlations in the Gibbs state has also been studied in quantum
settings. In particular, it has been shown that the Gibbs state has this property in the 1D
translationally invariant case [Ara69] or above some constant temperature in higher dimensions
[KGK+14]. Thus, in these regimes, there exist efficient representations for the state of the system
using a tensor network ansatz like matrix product states or projected entanglement pair states
[Has06, KGK+14, MSVC15]. However, this does not necessarily imply an efficient algorithm that
finds and faithfully manipulates these tensor networks.

The decay of conditional mutual information is another property of the Gibbs state that has
been rigorously proved for 1D systems [KBa19b] and conjectured for higher dimensions. This result
has been used to find algorithmic schemes for preparing the Gibbs state on a quantum computer
[BK16] or estimating the free energy in 1D [Kim17, KS18]. A recent result of [KKBa20] uses cluster
expansions along with a technique very similar to the one we use in Theorem 123 (i.e. showing
the low-order derivatives of the correlation function are zero) to establish the decay of conditional
mutual information above some constant temperature.

5.1.4 Discussion and open questions

Our work raises many questions that we leave for future work. Here we mention some of them.

1. Perhaps the most immediate problem is to fully establish (or refute) the connection between
the decay of correlations and the absence of zeros. There are at least two directions to pursue.

(a) It would be interesting to prove the exponential decay of correlations in the zero-free
region of non-commuting Hamiltonians in higher dimensions. Currently we can only
show this when the distance of the observables is Ω(log 𝑛). It seems for this to work, the
region of applicability of certain tools such as quantum belief propagation needs to be
extended to the complex regime.

(b) Establishing the absence of zeros in quantum systems when the correlations decay expo-
nentially is also open. A first step might be to prove this for commuting Hamiltonians
or 1D chains. In Section 5.6, we have already extended some parts of the proof of this
statement for the classical systems to commuting Hamiltonians, but it seems to complete
the proof, a more careful analysis of the entangled boundary conditions is required.

2. While we focus on the covariance form of the correlations (5.1), one can also consider quantum
conditional mutual information (qCMI) as a measure of correlations. Using the absence of
zeros to prove the decay of qCMI is another interesting question. This would extend the result
of [KKBa20] to lower temperatures down to the phase transition point. Since the approach
of [KKBa20] resembles some of the techniques we use, this looks like a promising direction.

3. Is there some range of temperatures or Hamiltonian parameters that a quantum computer
cannot efficiently sample from the Gibbs state but the extrapolation technique still works? At
least, when the parameter of interest is temperature, this depends on the fate of the previous
questions we mentioned, i.e. showing that the decay of correlations and qCMI are necessary
for the absence of zeros. The result of [BK16] implies an efficient quantum sampler under the
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same conditions. Are there other parameters besides temperature for which one can show a
separation between these notions?

4. Is it possible to improve the lower bound we obtained for the critical point 𝛽𝑐 in Theorem 121
without using other conditions such as the decay of correlations? In general, what is the
computational hardness of determining the thermal phase transition point 𝛽𝑐?

5. Can the running time of our algorithm be improved for specific systems to polynomial time?
This has been achieved for the classical Ising model [LSS19b, PR18] by relating the derivatives
of the partition function to combinatorial objects that can be efficiently counted.

6. Can we use the extrapolation idea to avoid the sign problem? The easy regime, which includes
the starting point of the extrapolation, could be a regime of parameters where the Hamiltonian
is sign-free and MCMC algorithms yield a good estimate, whereas the end point is where the
sign problem exists. A candidate parameter for extrapolation is the chemical potential. There
are important physical systems such as lattice gauge theories for which at zero chemical
potential the partition function is sign-free while there is a severe sign problem for non-zero
chemical potentials.

7. Barvinok’s approach has been used to obtain approximation algorithms for other problems
related to quantum computing [EM17, MB19, BGM21]. Are there other relevent applications
for this method?

5.2 Preliminaries and notation

5.2.1 Local and geometrically-local Hamiltonians

Consider a 𝐷-dimensional lattice Λ ⊂ Z𝐷 containing 𝑛 sites with a 𝑑-dimensional particle (qudit)
on each site. The Hilbert space is ℋ =

⨂︀
𝑖∈Λℋ𝑖 where ℋ𝑖 is the local Hilbert space of site 𝑖. For a

region 𝐴 ⊆ Λ, we denote its size by |𝐴| and its complement by 𝐴. The diameter of 𝐴 is defined to
be diam(𝐴) = sup{dist(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝐴}. The interaction of these particles is described by a local
Hamiltonian 𝐻 that has the following form:

𝐻 =
∑︁
𝑋⊂Λ

𝐻𝑋 . (5.9)

Each term 𝐻𝑋 is a Hermitian operator with operator norm at most ℎ that is acting non-trivially
only on the sites in 𝑋. We denote this by writing supp(𝐻𝑋) = 𝑋. The local terms 𝐻𝑋 do not
necessarily commute with each other. Similarly, we define 𝐻𝐴 =

∑︀
𝑋⊆𝐴𝐻𝑋 to be the Hamiltonian

restricted to a region 𝐴 ⊆ Λ. We denote the number of local terms in the Hamiltonian by 𝑚 and
often also write 𝐻 =

∑︀𝑚
𝑖=1𝐻𝑖. The 1-norm of an operator 𝑂 is denoted by ||𝑂||1 and its operator

norm by ||𝑂||.
In order to impose geometric locality on the interactions between the particles, we consider the

interactions that satisfy the following condition.

Definition 128 (Geometrically-local Hamiltonians). A Hamiltonian 𝐻 =
∑︀

𝑋⊂Λ𝐻𝑋 such that
| supp(𝐻𝑋)| = 0 when diam(𝑋) > 𝑅 or |𝑋| > 𝜅 is called a (𝜅,𝑅)-local Hamiltonian. We call 𝜅 the
locality and 𝑅 the range of 𝐻. We use the words geometrically-local and (𝜅,𝑅)-local interchangeably
when 𝜅,𝑅 are kept constant.
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This should be contrasted with the case where | supp(𝐻𝑋)| = 0 when |𝑋| > 𝜅 but there is no
restriction on diam(𝑋). In order to distinguish between these two, we use the terms geometrically-
local versus local throughout this paper. We also focus mostly on geometrically-local Hamiltonians
with a finite range 𝑅, but most of our results also apply to Hamiltonians with interactions that
decay fast enough, for example, with some exponential rate.

Remark 129. In general, the locality 𝜅 of a geometrically-local Hamiltonian on a 𝐷-dimensional
lattice Λ can be bounded as 𝜅 ≤ 𝑂(𝑅𝐷), which is the size of a ball of diameter 𝑅. Nevertheless, we
treat both 𝜅 and 𝑅 as independent parameters in this paper.

For the Hamiltonians we consider, the sum ||∑︀𝑋∩{𝑥0}≠∅𝐻𝑋 || is bounded from above by a con-
stant like 𝑂(ℎ𝑅𝜅𝐷) for any 𝑥0 ∈ Λ, but in general, this is a loose bound and we introduce the growth
constant as an independent parameter such that:

Definition 130 (Growth constant). Given a geometrically-local Hamiltonian 𝐻, the growth constant
𝑔 is defined such that |∑︀𝑋∩{𝑥0}≠∅𝐻𝑋 | ≤ 𝑔ℎ for all sites 𝑥0 ∈ Λ.

Given a (𝜅,𝑅)-local Hamiltonian 𝐻, we denote the boundary of a region 𝐴 ⊆ Λ by 𝜕𝐴 and
define it as 𝜕𝐴 = {𝑣 ∈ Λ ∖𝐴 : ∃𝑣′ ∈ 𝐴, dist(𝑣− 𝑣′) ≤ 𝑅}. Defined this way, the boundary of 𝐴 is a
subset of 𝐴.

For local Hamiltonians with 𝜅 = 2, we define an interaction graph which is an undirected graph
𝐺 = (𝑉,𝐸) with a qudit on each vertex 𝑣 ∈ 𝑉 and an edge (𝑖, 𝑗) between any two vertices 𝑖, 𝑗 that
are acted on by a local term in the Hamiltonian. For qubits, 𝑑 = 2 and such a Hamiltonian is of
the following form:

𝐻 = −
∑︁

(𝑖,𝑗)∈𝐸
𝑎,𝑏∈{𝑥,𝑦,𝑧}

𝐽𝑎𝑏𝑖𝑗 𝜎𝑎 ⊗ 𝜎𝑏 −
∑︁
𝑖∈𝑉

𝑎∈{𝑥,𝑦,𝑧}

ℎ𝑎𝑖 𝜎𝑎, (5.10)

where 𝐽𝑎𝑏𝑖𝑗 , ℎ
𝑎
𝑖 ∈ R are the interaction coefficients and 𝜎𝑎 ∈ {𝑋,𝑌, 𝑍,1} are Pauli matrices.

5.2.2 Quantum thermal state and partition function

The free energy of state 𝜌 at inverse temperature 𝛽 is defined as

𝐹𝛽(𝜌) = tr(𝐻𝜌)− 1

𝛽
𝑆(𝜌),

where 𝑆(𝜌) = − tr(𝜌 log 𝜌) is the von Neumann entropy of 𝜌 (here and throughout this paper, we
assume log denotes the natural logarithm). In thermal equilibrium, the free energy of the system is
minimized. Using the non-negativity of the relative entropy 𝑆(𝜌‖ 𝑒−𝛽𝐻

𝑍(𝛽) ) ≥ 0, one can see that

min
𝜌
𝐹𝛽(𝜌) = min

𝜌
tr(𝐻𝜌)− 1

𝛽
𝑆(𝜌) (5.11)

= − 1

𝛽
log(𝑍𝛽(Λ)),
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where 𝑍𝛽(𝐻) = tr[exp(−𝛽𝐻)] is the partition function of the system at inverse temperature 𝛽.
When dealing with spin systems on a lattice, we often denote the partition function of the system
by 𝑍𝛽(Λ) rather than 𝑍𝛽(𝐻).

Furthermore, the state that achieves this minimization, known as the Gibbs (or thermal) state,
is given by

𝜌𝛽(𝐻) =
exp(−𝛽𝐻)

𝑍𝛽(𝐻)
. (5.12)

We often need to consider the Gibbs state after some measurement has been performed on a local
region of the lattice. The post-selected state 𝜌𝛽(𝐻|𝑁) associated with a positive operator 𝑁 is
given by

𝜌𝛽(𝐻|𝑁) =

√
𝑁 exp(−𝛽𝐻)

√
𝑁

tr[exp(−𝛽𝐻)𝑁 ]
. (5.13)

5.2.3 Quantum belief propagation

Suppose certain local terms in Hamiltonian 𝐻 are removed and consider the Gibbs state before
and after this change. We would like to relate these Gibbs states by applying a local operator on
the old state to obtain the new one. This has been addressed before in [Has07b] under the name
quantum belief propagation. We only mention this result without the proof and refer the reader to
[Has07b, KBa19b] for the derivation and more details.

Proposition 131 (Quantum belief propagation). Let 𝐻 be a geometrically-local Hamiltonian on
lattice Λ. Consider a sublattice 𝐶 ⊂ Λ. We denote the terms in 𝐻 acting on both 𝐶 and 𝐶 by 𝐻𝜕𝐶 .
There exists a quasi-local operator 𝜂 such that

𝑒−𝛽𝐻 = 𝜂𝑒−𝛽(𝐻−𝐻𝜕𝐶)𝜂†, (5.14)

where ||𝜂|| ≤ exp(𝛽/2||𝐻𝜕𝐶 ||). Moreover, there exists a truncation of 𝜂 denoted by 𝜂ℓ supported
non-trivially only on 𝜕𝐶 and sites within distance ℓ from 𝜕𝐶 such that for some positive constants
𝛼1, 𝛼2, ⃒⃒⃒⃒

𝜂 − 𝜂ℓ
⃒⃒⃒⃒
≤ 𝑒𝛼1|𝜕𝐶|−𝛼2ℓ. (5.15)

5.2.4 Tools from complex analysis

Given a function that is analytic in a region of the complex plane, i.e. it is complex differentiable,
we are interested in approximating the function in that region with a low-degree polynomial. Con-
ventional methods in complex analysis allow us to achieve this using a Taylor expansion around a
point inside that region.

Definition 132 (Taylor expansion of analytical functions). Given a complex function 𝑓(𝑧) that
is analytic in a region 𝐴, the Taylor expansion of 𝑓(𝑧) around a point 𝑧0 ∈ 𝐴 is a power series∑︀∞

𝑘=0 𝑎𝑘(𝑧 − 𝑧0)
𝑘, where for ∀𝑘 = 0, 1, . . .

𝑎𝑘 =
1

𝑘!

𝑑𝑘𝑓(𝑧0)

𝑑𝑧𝑘
=

1

2𝜋𝑖

∮︁
𝐶

𝑓(𝑤)

(𝑤 − 𝑧0)𝑘+1
𝑑𝑤 (5.16)
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for an arbitrary contour 𝐶 around 𝑧0 inside the region 𝐴.

In Section 5.7, we map the partition function of a quantum system to that of a classical system.
As we increase the precision of the mapping, we get a family of classical systems with increasing
size that in the limit of an infinite number of particles have the same partition function as the quan-
tum system. The following theorem guarantees that the zero-free region of the classical ensemble
coincides with that of the original quantum system.

Theorem 133 (Multivariate Hurwitz’s theorem). If a sequence of multivariate functions
𝑓1, 𝑓2, 𝑓3, . . . are analytic and non-vanishing on a connected open set 𝐷 ⊂ C𝑛 and converge uniformly
on compact subsets of 𝐷 to 𝑓 , then f is either non-vanishing on 𝐷 or is identically zero.

The proof can be found in standard complex analysis textbooks [Gam03].

5.3 Algorithm for estimating the partition function

In this section, we provide more details about the approximation algorithm that we presented in
Section 5.1.

Definition 134. An approximation algorithm for the partition function 𝑍𝛽(𝐻) takes as input the
description of the local Hamiltonian 𝐻, the inverse temperature 𝛽, and a parameter 𝜀 and gives an
estimate 𝑍𝛽(𝐻) with 𝜀-multiplicative error, i.e.⃒⃒⃒

𝑍𝛽(𝐻)− 𝑍𝛽(𝐻)
⃒⃒⃒
≤ 𝜀𝑍𝛽(𝐻). (5.17)

This is, up to unimportant constants, equivalent to finding an 𝜀-additive error for log𝑍𝛽(𝐻) or
𝐹𝛽(𝐻).

We now make a connection between analyticity of functions and approximation algorithms
precise. Similar propositions were first proved by [Bar16a] for bounded degree polynomials.

Suppose we want to estimate the value of a complex function 𝑓(𝑧). We consider two cases. One
is when there is an upper bound on the absolute value of the function in the region that 𝑓(𝑧) is
analytic. The other is when the given function is 𝑓(𝑧) = log(𝑔(𝑧)) for a polynomial 𝑔(𝑧) of degree 𝑛.
The latter is used in Section 5.7.2 when studying the XXZ model. We need the former version since
as we will see in Theorem 136, the partition function of quantum (or even some classical) systems
is not always a polynomial in exp(𝛽𝐽).

Proposition 135 (Truncated Taylor series for bounded functions and polynomials). We denote a
disk of radius 𝑏 centered at the origin in the complex plane by Δ𝑏, that is Δ𝑏 = {𝑧 ∈ C : |𝑧| ≤ 𝑏}.

(1) Let 𝑓(𝑧) be a complex function that is analytic and bounded as |𝑓(𝑧)| ≤ 𝑀 when 𝑧 ∈ Δ𝑏 for
a constant 𝑏 > 1. Then the error of approximating 𝑓(𝑧) by a truncated Taylor series of order
𝐾 for all |𝑧| ≤ 1 is bounded by⃒⃒⃒⃒

⃒𝑓(𝑧)−
𝐾∑︁
𝑘=0

𝑎𝑘𝑧
𝑘

⃒⃒⃒⃒
⃒ ≤ 𝑀

𝑏𝐾(𝑏− 1)
, |𝑧| ≤ 1. (5.18)
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(2) Assume 𝑏 is fixed and there is a deterministic algorithm that finds the coefficients 𝑎𝑘 in time
𝑂(𝑁𝑘) for some parameter 𝑁 . Then there exists a deterministic algorithm with running time
𝑁𝑂(log(𝑀/𝜀)) that outputs an 𝜀-additive approximation for 𝑓(𝑧).

(3) [cf. [Bar16a]] Let 𝑓(𝑧) = log(𝑔(𝑧)) for some polynomial 𝑔(𝑧) of degree 𝑁 that does not vanish
when 𝑧 ∈ Δ𝑏. The error of approximating 𝑓(𝑧) by a truncated Taylor series of order 𝐾 for
|𝑧| ≤ 1 is bounded by 𝑁

𝐾+1
1

𝑏𝐾(𝑏−1)
.

(4) [cf. [Bar16a]] Assuming 𝑏 is fixed, there exists a deterministic algorithm with running time
𝑁𝑂(log(𝑁/𝜀)) that outputs an 𝜀-additive approximation for log(𝑔(𝑧)).

Proof. The proof of (1) is a basic result in complex analysis based on the Cauchy integral theorem
for analytic functions. Let 𝐶 ′ be a circle of radius 𝑏 that contains both 𝑧 and 𝑧 = 0. We have

𝑓(𝑧) =
1

2𝜋𝑖

∮︁
𝐶′

𝑓(𝑤)

𝑤 − 𝑧
𝑑𝑤 =

1

2𝜋𝑖

∮︁
𝐶′

𝑓(𝑤)

𝑤

(︁
1− 𝑧

𝑤

)︁−1
𝑑𝑤

=
1

2𝜋𝑖

∮︁
𝐶′

𝑓(𝑤)

𝑤

(︃
𝐾∑︁
𝑘=0

(︁ 𝑧
𝑤

)︁𝑘
+
(︁ 𝑧
𝑤

)︁𝐾+1 (︁
1− 𝑧

𝑤

)︁−1
)︃
𝑑𝑤

=
𝐾∑︁
𝑘=0

𝑓 (𝑘)(0)

𝑘!
𝑧𝑘 +

1

2𝜋𝑖

∮︁
𝐶′

𝑓(𝑤)

𝑤 − 𝑧

(︁ 𝑧
𝑤

)︁𝐾+1
𝑑𝑤,

in which we used Eq. (5.16) to get to the last line. We can now bound the remainder as⃒⃒⃒⃒
⃒𝑓(𝑧)−

𝐾∑︁
𝑘=0

𝑓 (𝑘)(0)

𝑘!
𝑧𝑘

⃒⃒⃒⃒
⃒ ≤ 1

2𝜋

∮︁
𝐶′

|𝑓(𝑤)|
|𝑤 − 𝑧|

(︁⃒⃒⃒ 𝑧
𝑤

⃒⃒⃒)︁𝐾+1
𝑑𝑤.

≤𝑀
𝑏

𝑏− 1

(︂
1

𝑏

)︂𝐾+1

, (5.19)

where the last line follows from the fact that |𝑤 − 𝑧| ≥ 𝑏− 1, |𝑧| ≤ 1, and |𝑓(𝑤)| ≤𝑀 on 𝐶 ′.
The proof of part (3) is similar to that of (1). The degree 𝑁 polynomial 𝑔(𝑧) has at most 𝑁

complex roots {𝜁𝑘}𝑁𝑘=1 such that |𝜁𝑘| ≥ 𝑏. Thus, 𝑔(𝑧) = 𝑔(0)
∏︀𝑁
𝑙=1(1− 𝑧

𝜁𝑙
) and

log(𝑔(𝑧)) = log(𝑔(0)) +

𝑁∑︁
𝑙=1

log

(︂
1− 𝑧

𝜁𝑙

)︂
, ∀𝑧 : |𝑧| ≤ 1. (5.20)

We can expand each term like log(1− 𝑧
𝜁𝑙
) as

log

(︂
1− 𝑧

𝜁𝑙

)︂
= −

𝐾∑︁
𝑘=1

𝑧𝑘

𝑘𝜁𝑘𝑙
+ 𝑞ℓ(𝑧), (5.21)

where similar to part (1), we see that 𝑞ℓ(𝑧) is a term that can be bounded by

|𝑞ℓ(𝑧)| ≤
1

𝐾 + 1

1

𝑏𝐾(𝑏− 1)
. (5.22)
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Hence, the remainder term in the Taylor expansion of log(𝑔(𝑧)) up to order 𝐾 is 𝑞(𝑧) =
∑︀𝑁

ℓ=1 𝑞ℓ(𝑧),
which is bounded by |𝑞(𝑧)| ≤ 𝑁

𝐾+1
1

𝑏𝐾(𝑏−1)
as claimed in part (3).

In order to find the algorithms of part (2) and (4), we need to evaluate the Taylor coefficients
of 𝑓(𝑧) up to some degree 𝐾. Since we want an 𝜀-additive approximation of 𝑓(𝑧), one can see from
parts (1) and (2) that it is sufficient to keep the Taylor expansion until order 𝐾 = 𝑂(log(𝑀𝜀 )) for
part (2) and 𝐾 = 𝑂(log(𝑁𝜀 )) for part (4). To be able to evaluate the derivatives 𝑑𝑘𝑓(𝑧)

𝑑𝑧𝑘
, we express

them in terms of the derivatives of 𝑔(𝑧), i.e. 𝑑𝑘𝑔(𝑧)
𝑑𝑧𝑘

2. This can be done by noticing that

𝑑𝑘𝑔(𝑧)

𝑑𝑧𝑘
=

𝑘−1∑︁
ℓ=0

(︂
𝑘 − 1

ℓ

)︂
𝑑ℓ𝑔(𝑧)

𝑑𝑧ℓ
𝑑𝑘−ℓ𝑓(𝑧)

𝑑𝑧𝑘−ℓ
, (5.23)

so if we have access to 𝑑𝑘𝑔(𝑧)
𝑑𝑧𝑘

, we can find 𝑑𝑘𝑓(𝑧)
𝑑𝑧𝑘

by solving the system of equations in time poly(𝑘).

The important step, however, is to estimate 𝑑𝑘𝑔(𝑧)
𝑑𝑧𝑘

. This by assumption takes time 𝑁𝑂(𝑘) for the
𝑘th derivative. Thus, evaluating the Taylor expansion in parts (2) and (4) can be done in time
𝑁𝑂(log(𝑀/𝜀)) and 𝑁𝑂(log(𝑁/𝜀)), respectively. ⊓⊔

Theorem 136 (Extrapolation algorithm for estimating the partition function). There exists a
deterministic classical algorithm that runs in time 𝑛𝑂(log(𝑛/𝜀)) and outputs an estimate within 𝜀-
multiplicative error of the partition function 𝑍𝛽(𝐻) at some constant 𝛽 in the zero-free region Ω𝛿,𝛽
(see Definition 119).

Proof of Theorem 136. We apply the truncated Taylor expansion. To use that result, we first
need to specify the zero-free region and then bound the running time of computing the 𝑘th derivative
by 𝑛𝑂(𝑘).

We can without loss of generality assume that the zero-free region Ω𝛿,𝛽 is a rectangular region of
constant width and size depicted in Figure 5-1. The result of Proposition 135, however, holds when
the zero-free region is a disk of radius 𝑏. To match these domains, we can compose the partition
function with a function 𝜑(𝑧) that maps a disk of radius 𝑏 to the rectangular region Ω𝛿,𝛽 such that
𝜑(0) = 0 and 𝜑(1) = 𝛽 and 𝑏 is constant depending on 𝛿. It is shown in Lemma 2.2.3 of [Bar16a]
that one can find such a 𝜑(𝑧) which is a constant degree polynomial. Hence, the composed partition
function is non-zero and bounded on this disk and we can apply the bound (5.18) on the error of
the truncated Taylor expansion.

As mentioned in Section 5.1.2, for a system of 𝑛 qudits, we can compute the order 𝑘 derivatives
of 𝑍𝛽(𝐻) in time 𝑛𝑂(𝑘). Similarly, we can evaluate the derivatives of 𝑍𝛽(𝐻) composed with the
constant-degree polynomial 𝜑(𝑧) using the same running time. Keeping only 𝑘 = 𝑂(log(𝑛/𝜀)) many
terms results in a quasi-polynomial algorithm with multiplicative error 𝜀. ⊓⊔

5.4 Lower bound on the critical inverse temperature

In this section, we show that at high temperatures, there are no complex zeros near the real axis.
More precisely, we prove that there exists a disk of constant radius 𝛽0 centered at 𝛽 = 0 that does
not contain any zeros and the free energy is analytic inside it. The radius 𝛽0 depends only on the
geometric parameters of the Hamiltonian such as the growth constant.

2We are using the same definition 𝑓(𝑧) = log(𝑔(𝑧)) for the function in part (1) as well.
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Theorem 137 (High temperature zeros). Let 𝐻 be a gometrically-local Hamiltonian on qudits
with range 𝑅, growth constant 𝑔, and local interactions with norm at most ℎ (see Definition 128
and Definition 130). There exists a real constant 𝛽0 = 1/(5𝑒𝑔ℎ𝜅) such that for all 𝛽 ∈ C with
|𝛽| ≤ 𝛽0, the partition function 𝑍𝛽(Λ) of 𝐻 does not vanish and log(𝑍𝛽(Λ)) is analytic and bounded
by
⃒⃒
log |𝑍𝛽(Λ)|

⃒⃒
≤ (𝑒2𝑔ℎ|𝛽|+ log 𝑑)𝑛.

This gives a lower bound 𝛽0 ≤ 𝛽𝑐 on the phase transition point 𝛽𝑐. Also, as outlined in Theo-
rem 136, if we can establish an upper bound like

⃒⃒
log |𝑍𝛽(Λ)|

⃒⃒
≤ 𝑂(𝑛) for small enough complex 𝛽,

we can devise an approximation algorithm for the partition function. Hence we get

Corollary 138 (Approximation algorithm for the partition function at high temperatures).
There exists a quasi-polynomial time algorithm with running time 𝑛𝑂(log(𝑛/𝜀)) that outputs an 𝜀-
multiplicative approximation to the partition function 𝑍𝛽(Λ) of a geometrically-local Hamiltonian 𝐻
when |𝛽| ≤ 𝛽0.

Before getting to the proof of Theorem 137, we need to gather some facts and lemmas. Given a
lattice Λ ⊂ Z𝐷 with 𝑛 sites, we consider a series of sublattices Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ Λ2 ⊂ · · · ⊂ Λ𝑛 = Λ
such that each sublattice Λ𝑗 has one fewer vertex than Λ𝑗+1 and Λ0 = ∅. The partition function of
Λ0 is assigned to be 𝑍𝛽(∅) = 1 for any complex 𝛽. Therefore, we can write

𝑍𝛽(Λ) = 𝑑𝑛
𝑛−1∏︁
𝑗=0

(︂
1

𝑑

𝑍𝛽(Λ𝑗+1)

𝑍𝛽(Λ𝑗)

)︂
, (5.24)

where the factors of 𝑑 are added for later convenience and to account for the dimension of the
removed sites. In order to show |log |𝑍𝛽(Λ)|| ≤ 𝑂(𝑛) for a 𝛽 ∈ C, we just need to bound the
logarithm of each of the terms in Eq. (5.24) by a constant, i.e.⃒⃒⃒⃒

log
⃒⃒⃒1
𝑑

𝑍𝛽(Λ𝑗+1)

𝑍𝛽(Λ𝑗)

⃒⃒⃒⃒⃒⃒⃒
≤ 𝑂(1). (5.25)

This bound tells us how much the partition function changes after removing a single site from the
lattice. We later prove this by induction on the number of sites. However, as shown in the following
lemma, this inequality is always satisfied when 𝛽 is real.

Lemma 139 (Site removal bound). The following bound holds for any 𝑋 ⊆ Λ and 𝛽 ∈ R+:⃒⃒⃒⃒
log
⃒⃒⃒ 1

𝑑|𝑋|
𝑍𝛽(Λ)

𝑍𝛽(Λ ∖𝑋)

⃒⃒⃒⃒⃒⃒⃒
≤ 𝑔ℎ|𝛽||𝑋|. (5.26)

Recall that ℎ is the maximum norm of the local terms 𝐻𝑋 in 𝐻 and the growth constant 𝑔 is chosen
such that |∑︀𝑋∩{𝑥0}≠∅𝐻𝑋 | ≤ 𝑔ℎ for all sites 𝑥0 ∈ Λ.

Proof. Given any 𝑋 ⊆ Λ, we partition the Hamiltonian 𝐻 into two parts: 𝐻near =∑︀
𝑋′⊂Λ:𝑋′∩𝑋 ̸=∅𝐻𝑋′ and 𝐻far = 𝐻Λ∖𝑋 where 𝐻Λ∖𝑋 corresponds to the terms in the Hamiltonian
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acting on the remaining sublattice Λ ∖𝑋. We have

𝑍𝛽(Λ) = trΛ
[︀
𝑒−𝛽(𝐻far+𝐻near)

]︀
≤ trΛ

[︀
𝑒−𝛽𝐻far𝑒−𝛽𝐻near

]︀
≤ trΛ

[︀
𝑒−𝛽𝐻far

]︀⃒⃒⃒⃒
𝑒−𝛽𝐻near

⃒⃒⃒⃒
≤ 𝑑|𝑋| trΛ∖𝑋

[︀
𝑒−𝛽𝐻far

]︀
𝑒

⃒⃒⃒⃒
𝛽𝐻near

⃒⃒⃒⃒
≤ 𝑍𝛽(Λ ∖𝑋)𝑑|𝑋|𝑒𝑔ℎ|𝛽||𝑋|, (5.27)

where we used the Golden-Thompson inequality in the first line and the Hölder inequality to get to
the second line. The factor 𝑑|𝑋| is added since the original trace is over the Hilbert space of Λ and
not Λ ∖𝑋. Similarly, one can show 𝑑|𝑋|𝑍𝛽(Λ ∖𝑋) ≤ 𝑍𝛽(Λ)𝑒

𝑔ℎ|𝛽||𝑋|. These bounds together prove
the lemma. ⊓⊔

Theorem 137 extends bound (5.26) to the case where 𝛽 is a small complex number. We prove
this in two steps.

First step: In contrast to the proof of Lemma 139, the Golden-Thompson inequality can no
longer be used in the complex regime. Hence, to compare the partition function before and after
removing a site 𝑥0, we need to find another way of separating the contribution of the terms in the
Hamiltonian that act on 𝑥0. We achieve this using a cluster expansion for the partition function
that expands the operator exp(−𝛽𝐻) into a sum of products of local terms in 𝐻. The idea of
using cluster expansions to study high temperature properties of classical or quantum spin systems
has been widely applied before [KP86, Dob96, Par82, Gre69]. Here, we use a particular version of
that expansion which is tailored for our application. This was first introduced in [Has06] and later
improved and generalized in [KGK+14]. In Section 5.4.1, we modify the result of [Has06, KGK+14]
and adapt it for complex partition functions.

Second step: Our next step is to use the cluster expansion and show that in the partition function,
the contribution of the sites acting on 𝑥0 compared to the rest of the terms is bounded by a constant.
We show this in Section 5.4.2 by induction on the number of sites. This is our main contribution
and lets us prove the bound (5.26).

5.4.1 The cluster expansion for the partition function

When using the cluster expansion, we often need to consider products of local terms like
∏︀ℓ
𝑗=1𝐻𝑋𝑗 ,

but since the local interaction terms 𝐻𝑋𝑗 do not necessarily commute with each other, we set an ℓ-
tuple (𝑋1, . . . , 𝑋ℓ) to indicate the order of multiplication. We also need to decompose the sequence
(𝑋1, . . . , 𝑋ℓ) into the union of connected components. Let us define what we mean by connected
more formally.

Definition 140 (Connected sets). Fix a site 𝑥0 ∈ Λ. A collection of sublattices such as 𝒳 =
{𝑋1, 𝑋2, . . . , 𝑋𝑘} is called a connected set containing 𝑥0 with size |𝒳 | = 𝑘 if the following conditions
hold

i) All the sublattices 𝑋1, 𝑋2, . . . , 𝑋𝑘 have bounded size and diameter. That is 1 ≤ |𝑋𝑖| ≤ 𝜅 and
diam(𝑋𝑖) ≤ 𝑅.
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𝒙𝟎

𝓨

𝓧𝟏

𝓧𝟐

Figure 5-2: The sets 𝒳1,𝒳2 are connected, contain 𝑥0, and have size |𝒳1| = 1, |𝒳2| = 4. However,
the set 𝒴 is not connected, does not include 𝑥0, and has size |𝒴| = 2.

ii) For any sublattice 𝑋𝑖 in 𝒳 , a series of other members of 𝒳 connect this set to the site 𝑥0. See
Figure 5-2 for an example. More precisely we have: for any 𝑋𝑖 ∈ 𝒳 , there exists 𝐼 ⊆ [𝑘] such
that 𝑖 ∈ 𝐼 and ∀𝑗 ∈ 𝐼, ∃ℓ ∈ 𝐼 : 𝑋𝑗 ̸= 𝑋ℓ yet 𝑋𝑗 ∩𝑋𝑙 ̸= ∅, and moreover, 𝑥0 ∈ ∪𝑗∈𝐼𝑋𝑗.

Although 𝒳 consists of sublattice of Λ and not individual sites, in a slight abuse of notation, we
specify a set 𝒳 that contains the site 𝑥0 by 𝑥0 ∈ 𝒳 . We denote all the sites that a connected set 𝒳
includes by supp(𝒳 ).

Remark 141. In Definition 140, we include an upper bound on the size and diameter of the subsets
in 𝒳 , i.e. |𝑋𝑖| ≤ 𝜅,diam(𝑋𝑖) ≤ 𝑅. This is because for geometrically-local Hamiltonians, ||𝐻𝑋 || = 0
for |𝑋𝑖| > 𝜅, diam(𝑋𝑖) > 𝑅, so we do not need to consider those sets.

In the upcoming proofs, we need to have an upper bound on the number of the connected sets
𝒳 that contains a specific site 𝑥0 ∈ Λ. This is stated in the following lemma.

Lemma 142 (Cf. [KGK+14]). The number of connected sets 𝒳 of size |𝒳 | containing the site 𝑥0 ∈ Λ
is upper bounded by 𝑔|𝒳 | where 𝑔 is the growth constant of the Hamiltonian 𝐻 (see Definition 130).
In particular, for a D-dimensional lattice and 𝜅 = 2, we have 𝑔 ≤ 2𝑒𝐷. We note that these bounds
are in general loose and can be improved for specific Hamiltonians.

The next lemma achieves the first step in our proof by setting up the cluster expansion for the
partition function.

Lemma 143 (High temperature expansion). For any 𝑥0 ∈ Λ, the partition function of the lattice
𝑍𝛽(Λ) admits the following decomposition for |𝛽| ≤ 1

𝑔ℎ𝜅(𝑒−1) :

𝑍𝛽(Λ) = 𝑑 · 𝑍𝛽(Λ ∖𝑋0) +
∑︁

𝒳 :𝑥0∈𝒳
𝒳 is connected

𝑊𝛽(𝒳 )𝑍𝛽(Λ ∖ supp(𝒳 )), (5.28)

where 𝑋0 = {𝑥0} and we define 𝑊𝛽(𝒳 ) as

𝑊𝛽(𝒳 ) =

∞∑︁
𝑝=|𝒳 |

(−𝛽)𝑝
𝑝!

(︀ ∑︁
(𝑋1,...,𝑋𝑝)
∀𝑖∈[𝑝]:𝑋𝑖∈𝒳
𝒳=∪𝑝

𝑖=1{𝑋𝑖}

trsupp(𝒳 )

[︀ 𝑝∏︁
𝑗=1

𝐻𝑋𝑗

]︀)︀
. (5.29)
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The last sum in (5.29) is over all p-tuples (𝑋2, 𝑋2, . . . , 𝑋𝑝) that one can form from members of 𝒳
by repeating them at least once.

Proof. We start by Taylor expanding exp(−𝛽𝐻). The notation used here is set so that when Λ is
replaced with a sublattice, a similar bound holds. We have

𝑍𝛽(Λ) = trΛ
[︀ ∞∑︁
𝑘=0

(−𝛽)𝑘
𝑘!

(
∑︁
𝑋⊂Λ

𝐻𝑋)
𝑘
]︀

= trΛ
[︀ ∞∑︁
𝑘=0

(−𝛽)𝑘
𝑘!

(
∑︁

𝑋⊂Λ∖𝑋0

𝐻𝑋 +
∑︁

𝑋⊂Λ:𝑋∩𝑋0 ̸=∅

𝐻𝑋)
𝑘
]︀

= trΛ
[︀ ∞∑︁
𝑘=0

(−𝛽)𝑘
𝑘!

(
∑︁

𝑋⊂Λ∖𝑋0

𝐻𝑋)
𝑘
]︀
+ trΛ

[︀ ∞∑︁
ℓ=1

(−𝛽)ℓ
ℓ!

∑︁
(𝑋1,...,𝑋ℓ)
∀𝑖∈[ℓ]:𝑋𝑖⊂Λ

∃𝑋𝑖:𝑋𝑖∩𝑋0 ̸=∅

ℓ∏︁
𝑗=1

𝐻𝑋𝑗

]︀
, (5.30)

where the trace is over the Hilbert space of Λ as usual. The first term in the last line is just the
Taylor expansion of 𝑑 · 𝑍𝛽(Λ ∖𝑋0). As in Eq. (5.27), the factor 𝑑 is included because the original
trace is over Λ and not Λ ∖𝑋0. The last term, however, does not have a closed form, and involves
summing over all the products of the local interaction terms 𝐻𝑋𝑗 such that at least one of the terms
has non-empty overlap with the site 𝑥0. We can simplify this term by partitioning the sequence
(𝑋1, . . . , 𝑋𝑙) into two parts. The first part forms a connected set 𝒳 that contains the site 𝑥0. The
second part contains all 𝑋𝑖 that do not intersect with this connected set 𝒳 . We then change the
order of the summation in (5.30) by first summing over all 𝑋𝑖 not connected to a fixed 𝒳 and then
varying the set 𝒳 . Define the coefficient 𝑐𝑝,𝑞 =

(︀
𝑝+𝑞
𝑝

)︀ (−𝛽)𝑝+𝑞

(𝑝+𝑞)! , we have

∞∑︁
ℓ=1

(−𝛽)ℓ
ℓ!

∑︁
(𝑋1,...,𝑋𝑙)
∀𝑖∈[ℓ]:𝑋𝑖⊂Λ

∃𝑋𝑖:𝑋𝑖∩𝑋0 ̸=∅

trΛ
[︀ ℓ∏︁
𝑗=1

𝐻𝑋𝑗

]︀

=
∑︁

𝒳 :𝑥0∈𝒳
𝒳 is connected

∞∑︁
𝑝=|𝒳 |,𝑞=0

𝑐𝑝,𝑞

(︁ ∑︁
(𝑋1,...,𝑋𝑝)
∀𝑖∈[𝑝]:𝑋𝑖∈𝒳
𝒳=∪𝑝

𝑖=1{𝑋𝑖}

trsupp(𝒳 )

[︀ 𝑝∏︁
𝑗=1

𝐻𝑋𝑗

]︀ ∑︁
(𝑋𝑝+1,...,𝑋𝑝+𝑞)
𝑋𝑝+𝑖∩supp(𝒳 )=∅

trΛ∖supp(𝒳 )

[︀ 𝑝+𝑞∏︁
𝑗=𝑝+1

𝐻𝑋𝑗

]︀)︁
.

The coefficient
(︀
𝑝+𝑞
𝑝

)︀
in 𝑐𝑝,𝑞 counts the number of ways we can distribute our choices of 𝑋𝑖 ∈ 𝒳 inside

the tuple (𝑋1, . . . , 𝑋𝑝+𝑞). The last sum in the right side term vanishes for 𝑞 = 0. We can restate
this sum in terms of the Taylor expansion of 𝑍𝛽(Λ∖supp(𝒳 )). Using the fact that 𝑐𝑝,𝑞 =

(−𝛽)𝑝
𝑝!

(−𝛽)𝑞
𝑞! ,
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we get the following equality

∞∑︁
ℓ=1

(−𝛽)ℓ
ℓ!

∑︁
(𝑋1,...,𝑋ℓ)
∀𝑖∈[ℓ]:𝑋𝑖⊂Λ

∃𝑋𝑖:𝑋𝑖∩𝑋0 ̸=∅

trΛ
[︀ ℓ∏︁
𝑗=1

𝐻𝑋𝑗

]︀

=
∑︁

𝒳 :𝑥0∈𝒳
𝒳 is connected

∞∑︁
𝑝=|𝒳 |

(−𝛽)𝑝
𝑝!

(︀ ∑︁
(𝑋1,...,𝑋𝑝)
∀𝑖∈[𝑝]:𝑋𝑖∈𝒳
𝒳=∪𝑝

𝑖=1{𝑋𝑖}

trsupp(𝒳 )

[︀ 𝑝∏︁
𝑗=1

𝐻𝑋𝑗

]︀)︀
𝑍𝛽
(︀
Λ ∖ supp(𝒳 )

)︀

=
∑︁

𝒳 :𝑥0∈𝒳
𝒳 is connected

𝑊𝛽(𝒳 )𝑍𝛽(Λ ∖ supp(𝒳 )), (5.31)

which by plugging into Eq (5.30) gives us the expansion (5.28). Note that since we manipulated
infinite series, we still need to prove the convergence of the expansion (5.28) for small enough complex
𝛽. We show the absolute convergence of this expansion by first bounding the infinite series 𝑊𝛽(𝒳 )
and then the expression (5.31). A similar expansion for a different purpose has been considered
before in [Has06, KGK+14] where an upper bound for 𝑊𝛽(𝒳 ) is obtained. In particular, Lemma 5
in [KGK+14] implies 3

|𝑊𝛽(𝒳 )| ≤ 𝑑| supp(𝒳 )|
(︁
𝑒|𝛽|ℎ − 1

)︁|𝒳 |
. (5.32)

By using the result of Lemma 142, we see that

∑︁
𝒳 :𝑥0∈𝒳

𝒳 is connected

⃒⃒
𝑊𝛽(𝒳 )

⃒⃒
·
⃒⃒
𝑍𝛽(Λ ∖ supp(𝒳 ))

⃒⃒
≤ 𝑑𝑛𝑒𝑔ℎ|𝛽|𝑛

∞∑︁
|𝒳 |=1

(𝑔𝜅)|𝒳 |
(︁
𝑒|𝛽|ℎ − 1

)︁|𝒳 |
, (5.33)

in which we used the upper bound |𝑍𝛽(Λ ∖ supp𝒳 )| ≤ 𝑑𝑛−| supp(𝒳 )|𝑒𝑔ℎ|𝛽|𝑛 that can be shown using
the Hölder inequality. This right-hand side of the inequality (5.33) is finitely bounded when

𝑔𝜅(𝑒|𝛽|ℎ − 1) ≤ 1, (5.34)

which along with the inequality 𝑒𝑥 ≤ 1 + (𝑒 − 1)𝑥 implies an upper bound on the size of the
admissible 𝛽

|𝛽| ≤ 1

𝑔ℎ𝜅(𝑒− 1)
. (5.35)

Hence, we get

∑︁
𝒳 :𝑥0∈𝒳

𝒳 is connected

⃒⃒
𝑊𝛽(𝒳 )

⃒⃒
·
⃒⃒
𝑍𝛽(Λ ∖ supp(𝒳 ))

⃒⃒
≤ 𝑑𝑛𝑒𝑔ℎ|𝛽|𝑛

𝑔𝜅(𝑒|𝛽|ℎ − 1)

1− 𝑔𝜅(𝑒|𝛽|ℎ − 1)
, (5.36)

3Note that compared to [KGK+14] we pick up the extra factor 𝑑| supp(𝒳 )| when bounding
⃒⃒
tr
[︀∏︀

𝐻𝑋𝑗

]︀⃒⃒
.
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which for a fixed 𝑛, shows the absolute convergence of (5.28) and completes the proof of the lemma.
⊓⊔

Having this lemma, we can now proceed to the second step of our proof of Theorem 137.

5.4.2 A zero-free region at high temperatures

Proof of Theorem 137. As explained in the beginning of Section 5.4, to show the partition func-
tion does not vanish for small enough |𝛽|, and moreover | log𝑍𝛽(Λ)| ≤ 𝑂(𝑛), it is sufficient to prove
the bound in (5.25). More specifically, for any site 𝑥0 ∈ Λ and 𝑋0 := {𝑥0}, we prove⃒⃒⃒⃒

log

⃒⃒⃒⃒
1

𝑑

𝑍𝛽(Λ)

𝑍𝛽(Λ ∖𝑋0)

⃒⃒⃒⃒⃒⃒⃒⃒
≤ 𝑒2𝑔ℎ|𝛽|, ∀|𝛽| ≤ 𝛽0 =

1

5𝑒𝑔ℎ𝜅
(5.37)

The proof of this bound is by induction on the number of lattice sites 𝑛.
For the base of the induction, we assume 𝑍𝛽(∅) = 1 for all complex 𝛽. The induction hypothesis

is the bound (5.37). Thus, our goal is to assume (5.37) for lattices of size 𝑛− 1 and show that the
same bound holds for lattices of size 𝑛. By using the “telescoping product” as in Eq. (5.25) along
with the induction hypothesis, we obtain the following bound for all lattices of size at most 𝑛 − 1
including Λ ∖𝑋0,⃒⃒⃒⃒

log

⃒⃒⃒⃒
1

𝑑| supp(𝑋∖𝑋0)|
𝑍𝛽(Λ ∖𝑋0)

𝑍𝛽(Λ ∖𝑋)

⃒⃒⃒⃒⃒⃒⃒⃒
≤ 𝑒2𝑔ℎ|𝛽|| supp(𝑋 ∖𝑋0)|, |𝛽| ≤ 𝛽0, (5.38)

where 𝑋 ⊆ Λ is an arbitrary non-empty set. According to the decomposition of 𝑍𝛽(Λ) obtained in
Lemma 143, we have

1

𝑑

𝑍𝛽(Λ)

𝑍𝛽(Λ ∖𝑋0)
= 1 +

∑︁
𝒳 :𝑥0∈𝒳

𝒳 is connected

𝑊𝛽(𝒳 )

(︂
1

𝑑

𝑍𝛽(Λ ∖ supp(𝒳 ))

𝑍𝛽(Λ ∖𝑋0)

)︂
. (5.39)

Thus, we get

⃒⃒⃒⃒
log

⃒⃒⃒⃒
1

𝑑

𝑍𝛽(Λ)

𝑍𝛽(Λ ∖𝑋0)

⃒⃒⃒⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒⃒log ⃒⃒⃒⃒⃒1 + ∑︁

𝒳 :𝑥0∈𝒳
𝒳 is connected

𝑊𝛽(𝒳 )

(︂
1

𝑑

𝑍𝛽(Λ ∖ supp(𝒳 ))

𝑍𝛽(Λ ∖𝑋0)

)︂ ⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒⃒⃒

≤ − log

⎛⎜⎝1−
∑︁

𝒳 :𝑥0∈𝒳
𝒳 is connected

|𝑊𝛽(𝒳 )|
⃒⃒⃒⃒
1

𝑑

𝑍𝛽(Λ ∖ supp(𝒳 ))

𝑍𝛽(Λ ∖𝑋0)

⃒⃒⃒⃒⎞⎟⎠ (5.40)

≤ − log

⎛⎜⎝1−
∑︁

𝒳 :𝑥0∈𝒳
𝒳 is connected

(︁
𝑒|𝛽|ℎ − 1

)︁|𝒳 |
𝑒𝑔ℎ𝑒

2|𝛽|| supp(𝒳 )|

⎞⎟⎠ , (5.41)

where we used the following inequality to get to Eq. (5.40): for all 𝜁 ∈ C, |𝜁| ≤ 1, we have⃒⃒
log |1 + 𝜁|

⃒⃒
≤ − log(1 − |𝜁|). The last line (5.41) is obtained by plugging in the bound in (5.32)

and the induction hypothesis (5.38).
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It remains to show that Eq. (5.41) is bounded from above by 𝑒2𝑔ℎ|𝛽|. To get the desired
upper bound on (5.41), it is sufficient to prove the following bound which we separately prove in
Lemma 144: ∑︁

𝒳 :𝑥0∈𝒳
𝒳 is connected

(︁
𝑒|𝛽|ℎ − 1

)︁|𝒳 |
𝑒𝑔ℎ𝑒

2|𝛽|| supp(𝒳 )| ≤ 𝑒(𝑒− 1)𝑔ℎ|𝛽|, |𝛽| ≤ 𝛽0. (5.42)

The reason this implies the claimed upper bound on (5.41) is that we have

− log

⎛⎜⎝1−
∑︁

𝒳 :𝑥0∈𝒳
𝒳 is connected

(︁
𝑒|𝛽|ℎ − 1

)︁|𝒳 |
𝑒𝑔ℎ𝑒

2|𝛽|| supp(𝒳 )|

⎞⎟⎠ ≤ − log (1− 𝑒(𝑒− 1)𝑔ℎ|𝛽|)

≤ 𝑒2𝑔ℎ|𝛽|. (5.43)

To get to the last line we used the inequality − log(1 − 𝑒−1
𝑒 𝑦) ≤ 𝑦, ∀𝑦 ∈ [0, 1] with 𝑦 = 𝑒2𝑔ℎ|𝛽|.

Notice that 𝛽0 = 1
5𝑒𝑔ℎ𝜅 , which means 𝑦 = 𝑒2𝑔ℎ|𝛽| ≤ 1 for |𝛽| ≤ 𝛽0.

This concludes the induction step and also the proof of the theorem. ⊓⊔

Lemma 144. Consider the same setup as Theorem 137. The following bound holds for any 𝑥0 ∈ Λ:∑︁
𝒳 :𝑥0∈𝒳

𝒳 is connected

(︁
𝑒|𝛽|ℎ − 1

)︁|𝒳 |
𝑒𝑔ℎ𝑒

2|𝛽|| supp(𝒳 )| ≤ 𝑒(𝑒− 1)𝑔ℎ|𝛽|, |𝛽| ≤ 𝛽0. (5.44)

Proof of Lemma 144. Since for a connected set 𝒳 , both its size |𝒳 | and the size of its support
| supp(𝒳 )| show up in the summation, we need to take extra care in finding a proper upper bound.
We achieve this for any lattice size |Λ| = 𝑛, this time by induction over the size of |𝒳 |. It is not
hard to check that the bound (5.44) holds for connected sets of size |𝒳 | = 1. Next, we assume by
induction that (5.44) holds for connected sets 𝒳 with |𝒳 | ≤ 𝑎 − 1 for 𝑎 ≥ 2, and derive (5.44) for
connected sets |𝒳 | ≤ 𝑎. To this end, we begin with restating the sum in (5.44) in a different form.
This includes adding the contribution of all connected sets 𝒳 that contain a site 𝑥0 in the following
order.

First, we consider the contribution of a fixed set 𝑋 ⊂ Λ with size and diameter at most 𝜅 and
𝑅 that contains 𝑥0. We then sum over all the connected sets that include a site 𝑥 ∈ 𝑋. It is not
hard to see that by selecting all possible choices of 𝑋 and performing the addition in this way, we
overcount the number of connected sets 𝒳 that contain 𝑥0, and therefore get an upper bound on
the original sum in (5.44). More formally, for any 𝑥0 ∈ Λ and connected sets 𝒳 of size at most
𝑎 > 1, we have
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∑︁
𝒳 :𝑥0∈𝒳

𝒳 is connected
|𝒳 |≤𝑎

(︁
𝑒|𝛽|ℎ − 1

)︁|𝒳 |
𝑒𝑔ℎ𝑒

2|𝛽|| supp(𝒳 )|

≤
∑︁

𝑋:𝑥0∈𝑋
|𝑋|≤𝜅

diam(𝑋)≤𝑅

⎛⎜⎜⎜⎜⎝
(︁
𝑒|𝛽|ℎ − 1

)︁
𝑒𝑔ℎ𝑒

2|𝛽||𝑋|
∏︁
𝑥∈𝑋

⎛⎜⎜⎜⎜⎝1 +
∑︁

𝒳 ′:𝑥∈𝒳 ′

𝒳 ′ is connected
|𝒳 ′|≤𝑎−1

(︁
𝑒|𝛽|ℎ − 1

)︁|𝒳 |
𝑒𝑔ℎ𝑒

2|𝛽|| supp(𝒳 )|

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

≤
∑︁

𝑋:𝑥0∈𝑋
|𝑋|≤𝜅

diam(𝑋)≤𝑅

(︃(︁
𝑒|𝛽|ℎ − 1

)︁
𝑒𝑔ℎ𝑒

2|𝛽||𝑋|
∏︁
𝑥∈𝑋

(1 + 𝑒(𝑒− 1)𝑔ℎ|𝛽|)
)︃

≤ 𝑔
(︁
𝑒|𝛽|ℎ − 1

)︁(︁
𝑒𝑔ℎ𝑒

2|𝛽| (1 + 𝑒(𝑒− 1)𝑔ℎ|𝛽| )
)︁𝜅

(5.45)

≤ (𝑒− 1)𝑔|𝛽|ℎ𝑒𝑒(2𝑒−1)𝑔ℎ|𝛽|𝜅 (5.46)
≤ 𝑒(𝑒− 1)𝑔|𝛽|ℎ, (5.47)

where we used the induction hypothesis (which assumes (5.44) holds for the connected set 𝒳 ′ with
|𝒳 ′| ≤ 𝑎− 1) to get from the second to the third line. Eq. (5.45) follows from the definition of the
growth constant 𝑔 which gives an upper bound on the number of sets 𝑋 containing 𝑥0 with size at
most 𝜅. To get to Eq. (5.46) and (5.47), we use the fact that 1 + 𝑦 ≤ 𝑒𝑦, 𝑒𝑦 − 1 ≤ (𝑒 − 1)𝑦 for
𝑦 ∈ [0, 1] and |𝛽| ≤ 1

5𝑒𝑔ℎ𝜅 . ⊓⊔

5.5 Analyticity implies exponential decay of correlations

In this section, we show that the exponential decay of correlations is a necessary condition for
the free energy to be analytic and bounded close to the real axis. Our bounds are stronger for
commuting Hamiltonians on arbitrary lattices and non-commuting Hamiltonians on a 1D chain and
slightly weaker for generic geometrically-local cases.

Similar to the rest of this paper, our general strategy uses extrapolation between different regimes
of the inverse temperature parameter. We know that at 𝛽 = 0, the Gibbs state is just the maximally
mixed state, so the decay of correlations property trivially holds. Additionally, we show that at
𝛽 = 0, the low-order derivatives of a function that encode the amount of correlation between two
regions are zero. This combined with the absence of singularities coming from the analyticity
condition puts an exponentially small bound on how fast this function (i.e. the correlations) can
grow with 𝛽.

The proof is reminiscent of the one for classical systems first shown by [DS87]. As explained
earlier, the essence of the proof is the following simple lemma from complex analysis.

Lemma 145 (cf. [DS87]). Let 𝑓(𝑧1, . . . , 𝑧𝑚) be a complex function that on a bounded connected
open region Ω ⊂ C𝑚 is analytic and |𝑓(𝑧1, . . . , 𝑧𝑚)| ≤ 𝑀 . Let 𝑘1, . . . , 𝑘𝑚 be non-negative integers
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summing to 𝐾. Suppose that 𝑓(𝑧1, . . . , 𝑧𝑚) and its following derivatives are zero at some 𝜁0 ∈ Ω:

𝑑𝐾

𝑑𝑘1𝑧𝑖 . . . 𝑑𝑘𝑚𝑧𝑚
𝑓(𝑧1, . . . , 𝑧𝑚)

⃒⃒⃒
𝜁0

= 0 if |{𝑖 ∈ [𝑚] : 𝑘𝑖 ≥ 1}| ≤ 𝐿− 1, (5.48)

that is, unless we take the derivative with respect to at least 𝐿 distinct variables 𝑧𝑖, this derivative
is zero at 𝜁0. Then, for any (𝑧1, . . . , 𝑧𝑚) ∈ Ω, there exist constants 𝑐1, 𝑐2 depending on 𝜁0 and
(𝑧1, . . . , 𝑧𝑚) such that |𝑓(𝑧1, . . . , 𝑧𝑚)| ≤ 𝑐1𝑀𝑒−𝑐2𝐿.

Proof of Lemma 145. Without loss of generality, we can restrict ourselves to the single variable
case, 𝑚 = 1, by defining a path parameterized by 𝑧 ∈ [0, 1] that connects 𝜁 to any point (𝑧1, . . . , 𝑧𝑚)
of interest. We denote the function on this path by 𝑓(𝑧). Region Ω in this case is just a region in
the complex plane around [0, 1] that has a small imaginary part such that 𝑓(𝑧) remains analytic
and bounded.

Using conformal mapping similar to what we did in Theorem 136, we can map the unit disk onto
Ω, which is the set of 𝑧 ∈ C such that |𝑧| ≤ 1. Hence, without loss of generality, we assume 𝑓(𝑧) is
analytic on the unit disk. It is also not hard to see that Eq. (5.48) implies the first 𝐿 derivatives of
𝑓(𝑧) vanish at the origin. Thus, the Taylor expansion of 𝑓(𝑧) converges and we have

∀𝑧 ∈ Ω, 𝑓(𝑧) =
∑︁
𝑘>𝐿

𝑎𝑘𝑧
𝑘 = 𝑧𝐿

∑︁
𝑘>𝐿

𝑎𝑘𝑧
𝑘−𝐿, (5.49)

but
∑︀

𝑘>𝐿 𝑎𝑘𝑧
𝑘−𝐿 is itself an analytic function, so it is either a constant or attains its maximum

absolute value on the boundary. It follows from |𝑓(𝑧)| ≤𝑀 that in either case |∑︀𝑘>𝐿 𝑎𝑘𝑧
𝑘−𝐿| ≤𝑀 .

This implies ∀|𝑧| ≤ 1, |𝑓(𝑧)| ≤𝑀 |𝑧|𝐿, which in turn proves the theorem. ⊓⊔

The connection between Lemma 145, the decay of correlations, and the analyticity condition
becomes clear once we substitute our choice of function 𝑓(𝑧1, . . . , 𝑧𝑚) and region Ω. We begin by
defining Ω. Fixing our choice of function 𝑓(𝑧1, . . . , 𝑧𝑚) is postponed until after we discuss the precise
statement of the analyticity condition and the decay of correlations.

Region Ω corresponds to the region near the real 𝛽 axis where the partition function does not
vanish. Given a local Hamiltonian 𝐻 =

∑︀𝑚
𝑖=1𝐻𝑖, we define complex variables 𝑧1, . . . , 𝑧𝑚 such that

each 𝑧𝑖 roughly equals 𝛽 plus some small complex deviation. Hence, instead of working with functions
of 𝛽𝐻 such as exp(−𝛽𝐻), we consider functions of

∑︀𝑚
𝑖=1 𝑧𝑖𝐻𝑖 as in exp(−∑︀𝑚

𝑖=1 𝑧𝑖𝐻𝑖). For a fixed
inverse temperature 𝛽 and maximum deviation 𝛿, we denote the set of such tuples (𝑧1, . . . , 𝑧𝑚) by
Γ𝛿,𝛽. By varying 𝛽 from zero to some constant 𝛽 and taking the union of corresponding Γ𝛿,𝛽, the
set Ω𝛿,𝛽 is obtained. More precisely, we have the following definition.

Definition 146 (The vicinity of the real 𝛽 axis). Let Γ𝛿,𝛽 be the set {(𝑧1, . . . , 𝑧𝑚) : ∀𝑖 ∈ [𝑚], 𝑧𝑖 ∈
C, |𝑧𝑖 − 𝛽| ≤ 𝛿}. We define Ω𝛿,𝛽 to be Ω𝛿,𝛽 =

⋃︀
𝛽′∈R+

𝛽′≤𝛽
Γ𝛿,𝛽′ .

We also define the perturbed Gibbs state as follows.

Definition 147 (Complex perturbed Gibbs state). The 𝛿-perturbed Gibbs state of a local Hamilto-
nian 𝐻 =

∑︀𝑚
𝑖 𝐻𝑖 at inverse temperature 𝛽 is defined as

𝜌𝑧⃗(𝐻) =
𝑒−

∑︀𝑚
𝑖=1 𝑧𝑖𝐻𝑖

tr[𝑒−
∑︀𝑚

𝑖=1 𝑧𝑖𝐻𝑖 ]
, 𝑧⃗ = (𝑧1, . . . , 𝑧𝑚) ∈ Γ𝛿,𝛽 (5.50)
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where Γ𝛿,𝛽 is defined in Definition 146.

The analyticity condition we consider here is stronger than the ones derived in Section 5.4 in
the high temperature regime or used in the approximation algorithm in Section 5.3. Previously
we only included systems with open boundary conditions in our analysis, but here we also need to
allow for other boundary conditions. This is not restricted to the quantum case, and Dobrushin and
Shlosman use similar conditions in their proof for classical systems [DS87]. The precise statement
of our condition is the following:

Condition 1 (Analyticity after measurement). The free energy of a geometrically-local Hamiltonian
𝐻 is 𝛿-analytic at 𝛽 if for any local operator 𝑁 ≥ 0 with ||𝑁 || = 1, there exists a constant 𝑐 such
that ∀(𝑧1, . . . , 𝑧𝑚) ∈ Γ𝛿,𝛽, ⃒⃒⃒

log
(︁
tr
[︁
𝑒−

∑︀𝑚
𝑖=1 𝑧𝑖𝐻𝑖𝑁

]︁)︁⃒⃒⃒
≤ 𝑐𝑛. (5.51)

The free energy is said to be 𝛿-analytic along [0, 𝛽] if the bound (5.51) holds for ∀(𝑧1, . . . , 𝑧𝑚) ∈ Ω𝛿,𝛽

To see the motivation for this condition, first note that when restricted to classical systems, this
condition reduces to the one used in [DS87]. There the operator 𝑁 sets the boundary conditions
which fixes the value of certain spins in the system before computing the partition function, or more
generally, finding the Gibbs distribution. A natural question then is how varying these boundary
conditions affects the distribution. In particular, the uniqueness of the Gibbs distribution refers to
the case that in the limit of a large number of particles, changing distant spins has a negligible
effect on the distribution of spins on a finite region. Hence, a unique Gibbs distribution can be
defined for such systems. This condition is not satisfied at all temperatures, and below the critical
temperature, multiple Gibbs distributions exist. Thus, it seems natural to include the boundary
conditions in the partition function when studying its complex zeros and the critical behavior of
the system in general.

For quantum systems, one can think of fixing the boundary spin values by projecting them onto
a specific state or more generally by post-selecting after a local measurement has been performed.
Hence, tr [exp (−∑︀𝑚

𝑖=1 𝑧𝑖𝐻𝑖)𝑁 ] is the partition function of the normalized Gibbs state after con-
ditioning on the measurement outcome associated with 𝑁 . Notice that, in principle, the state of
the spins after post-selection can be entangled. As we will see, this causes technical difficulties in
extending the classical results to the quantum regime.

Finally, we note that the validity of Condition 1 can be shown in the high temperature regime
(𝛽 ≤ 𝛽0) by a slight modification of the argument in Section 5.4.1.

Our goal is to show that Condition 1 on the analyticity of the free energy implies the exponential
decay of correlations. This condition is stated as follows.

Condition 2 (Exponential decay of correlations). The correlations in the Gibbs state 𝜌𝛽(𝐻) of a
geometrically-local Hamiltonian decay exponentially if for any local Hermitian operators 𝑂1 and 𝑂2

and any region 𝐵 such that supp(𝑂1), supp(𝑂2) ⊂ 𝐵, there exist constants 𝜉 and 𝑐 such that⃒⃒
tr [𝜌𝛽(𝐻)𝑂1𝑂2]− tr [𝜌𝛽(𝐻)𝑂1] tr [𝜌𝛽(𝐻)𝑂2]

⃒⃒
≤ 𝑐|𝐵|||𝑂1||||𝑂2||𝑒−dist(𝑂1,𝑂2)/𝜉. (5.52)

We first prove a slightly weaker version of Condition 2 assuming Condition 1. We then improve
our bound for commuting and 1D Hamiltonians.
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Theorem 148 (Analyticity implies exponential decay of correlations). Suppose the free energy of a
geometrically-local Hamiltonian is 𝛿-analytic along [0, 𝛽] as in Condition 1 for some 𝛿 = 𝑂(1). Then
the correlations between any two operators 𝑂1, 𝑂2 with dist(𝑂1, 𝑂2) = Ω(log 𝑛) decay exponentially
in the range [0, 𝛽]. More precisely,⃒⃒

tr [𝜌𝛽(𝐻)𝑂1𝑂2]− tr [𝜌𝛽(𝐻)𝑂1] tr [𝜌𝛽(𝐻)𝑂2]
⃒⃒
≤ 𝑐𝑛𝑒−dist(𝑂1,𝑂2)/𝜉. (5.53)

Proof of Theorem 148. We can without loss of generality assume ||𝑂1||, ||𝑂2|| ≤ 1. Let 𝐴1 =
supp(𝑂1) and 𝐴2 = supp(𝑂2). Each of the observables 𝑂1 and 𝑂2 can be decomposed into two
positive semi-definite (PSD) matrices: 𝑂1 = 𝑂+

1 −𝑂−
1 and 𝑂2 = 𝑂+

2 −𝑂−
2 , where 𝑂+

1 , 𝑂
+
2 include

the positive eigenvalues of 𝑂1, 𝑂2 and −𝑂−
1 ,−𝑂−

2 include the negative ones. We can write the
covariance in Eq. (5.52) as

| tr [𝜌𝛽(𝐻)𝑂1𝑂2]− tr [𝜌𝛽(𝐻)𝑂1] tr [𝜌𝛽(𝐻)𝑂2] |

=

⃒⃒⃒⃒
⃒⃒ ∑︁
𝛼,𝛾∈{±}

𝛼𝛾 (tr [𝜌𝛽(𝐻)𝑂𝛼1𝑂
𝛾
2 ]− tr [𝜌𝛽(𝐻)𝑂𝛼1 ] tr [𝜌𝛽(𝐻)𝑂𝛾2 ])

⃒⃒⃒⃒
⃒⃒

≤ 4 · max
𝑁2,𝑁1≥0:

||𝑁2||,||𝑁1||≤1

|(tr [𝜌𝛽(𝐻)𝑁2𝑁1]− tr [𝜌𝛽(𝐻)𝑁2] tr [𝜌𝛽(𝐻)𝑁1])| , (5.54)

where supp(𝑁2) = 𝐴1 and supp(𝑁1) = 𝐴2. Recall that the post-selected state 𝜌𝛽(𝐻|𝑁) is defined
by

𝜌𝛽(𝐻|𝑁) =

√
𝑁 exp(−𝛽𝐻)

√
𝑁

tr[exp(−𝛽𝐻)𝑁 ]
. (5.55)

The bound (5.54) can be rewritten as

|(tr [𝜌𝛽(𝐻)𝑁2𝑁1]− tr [𝜌𝛽(𝐻)𝑁2] tr [𝜌𝛽(𝐻)𝑁1])| = |tr [𝜌𝛽(𝐻)𝑁2]| |tr[𝜌𝛽(𝐻|𝑁2)𝑁1]− tr [𝜌𝛽(𝐻|1)𝑁1]|
≤ |tr[𝜌𝛽(𝐻|𝑁2)𝑁1]− tr [𝜌𝛽(𝐻|1)𝑁1]| . (5.56)

Hence, our goal is to show

|tr[𝜌𝛽(𝐻|𝑁2)𝑁1]− tr [𝜌𝛽(𝐻|1)𝑁1]| ≤ 𝑐𝑒−dist(𝑂1,𝑂2)/𝜉. (5.57)

We instead show ⃒⃒⃒⃒
log

(︂
tr[𝜌𝛽(𝐻|𝑁2)𝑁1]

tr [𝜌𝛽(𝐻|1)𝑁1]

)︂⃒⃒⃒⃒
≤ 𝑐𝑒−dist(𝑂1,𝑂2)/𝜉. (5.58)

To see why this implies (5.57), we can further upper bound the right-hand side of (5.58) using
the inequality 𝑥 ≤ − log(1 − 𝑥) for 𝑥 < 1 and choosing 𝑥 = 𝑐 exp(−dist(𝑂1, 𝑂2)/𝜉). Then, by
exponentiating both sides of (5.58) and using the fact that tr(𝜌𝛽(𝐻)𝑁1) ≤ 1, we arrive at (5.57).
We can prove a similar bound even when instead of 1 there is any other PSD operator in the
denominator. One way to interpret these bounds is that a local measurement on region 𝐴2 is
undetected from the perspective of local operators on region 𝐴1.

The proof follows from Lemma 145. We first consider a perturbed version of (5.58) using
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Figure 5-3: To study the correlations between regions 𝐴1, 𝐴2, we can restrict the Gibbs state to
region 𝐵 while adding an operator on the boundary 𝜕𝐵 to include the effect of the rest of the
lattice. Regions 𝐺1, . . . , 𝐺5 show up when studying the derivatives of the correlation function. See
the proofs of Theorem 148 and Theorem 149.

Definition 147. We define 𝑓(𝑧1, . . . , 𝑧𝑚) as

𝑓(𝑧1, . . . , 𝑧𝑚) = log

(︂
tr[𝜌𝑧⃗(𝐻|𝑁2)𝑁1]

tr[𝜌𝑧⃗(𝐻|1)𝑁1]

)︂
= log

(︃
tr[𝑒−

∑︀𝑚
𝑖=1 𝑧𝑖𝐻𝑖𝑁2𝑁1]

tr[𝑒−
∑︀𝑚

𝑖=1 𝑧𝑖𝐻𝑖𝑁2]

tr[𝑒−
∑︀𝑚

𝑖=1 𝑧𝑖𝐻𝑖 ]

tr[𝑒−
∑︀𝑚

𝑖=1 𝑧𝑖𝐻𝑖𝑁1]

)︃
. (5.59)

This function is our choice for 𝑓(𝑧1, . . . , 𝑧𝑚) in Lemma 145. In particular, we prove that assuming
Condition 1 is satisfied, 𝑓(𝑧1, . . . , 𝑧𝑚) is analytic in Ω𝛿,𝛽, has a bounded absolute value, and has
vanishing derivatives at 𝑧1 = · · · = 𝑧𝑚 = 0. Let us begin with the analyticity and boundedness.

Analyticity and boundedness: From (5.51) we see that for any positive operator 𝑁 , the post-
selected free energy is analytic and there exists some constant 𝑐 such that⃒⃒⃒

log
(︁
tr
[︁
𝑒−

∑︀𝑚
𝑖=1 𝑧𝑖𝐻𝑖𝑁

]︁)︁⃒⃒⃒
≤ 𝑐𝑛, (5.60)

By using a proper choice for 𝑁 , we see that 𝑓(𝑧1, . . . , 𝑧𝑚) is a sum of analytic functions and therefore
is itself analytic. We also get an upper bound on |𝑓(𝑧1, . . . , 𝑧𝑚)|, that is,

∀(𝑧1, . . . , 𝑧𝑚) ∈ Ω𝛿,𝛽𝑐 , |𝑓(𝑧1, . . . , 𝑧𝑚)| ≤
⃒⃒⃒
log
(︁
tr[𝑒−

∑︀𝑚
𝑖=1 𝑧𝑖𝐻𝑖𝑁2𝑁1]

)︁⃒⃒⃒
+
⃒⃒⃒
log
(︁
tr[𝑒−

∑︀𝑚
𝑖=1 𝑧𝑖𝐻𝑖𝑁2]

)︁⃒⃒⃒
+
⃒⃒⃒
log
(︁
tr[𝑒−

∑︀𝑚
𝑖=1 𝑧𝑖𝐻𝑖𝑁1]

)︁⃒⃒⃒
+
⃒⃒⃒
log
(︁
tr[𝑒−

∑︀𝑚
𝑖=1 𝑧𝑖𝐻𝑖 ]

)︁⃒⃒⃒
≤ 4𝑐𝑛. (5.61)
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Vanishing derivatives: It remains to show that certain derivatives of 𝑓(𝑧1, . . . , 𝑧𝑚) are zero at
the point 𝛽 = 0, which is inside Ω𝛿,𝛽. The derivatives of 𝑓(𝑧1, . . . 𝑧𝑚) are combinations of terms like

𝑑𝐾

𝑑𝑘1𝑧𝑖 . . . 𝑑𝑘𝑚𝑧𝑚
log
(︁
tr
[︁
𝑒−

∑︀𝑚
𝑖=1 𝑧𝑖𝐻𝑖𝑁2𝑁1

]︁)︁⃒⃒⃒
𝑧=0

, (5.62)

where 𝑘𝑖 ≥ 0 and 𝐾 =
∑︀𝑚

𝑖=1 𝑘𝑖. Notice that we are including the 𝑧𝑖 that are not in the derivative by
letting 𝑘𝑖 = 0. We claim in certain instances that these terms are either zero or cancel each other.
Consider all the local terms 𝐻𝑖 that we are taking a derivative with respect to their 𝑧𝑖, i.e. 𝑘𝑖 ≥ 1.
We denote the union of the support of these terms by 𝐺. Recall that 𝐴1, 𝐴2 are the support of
𝑂1, 𝑂2, respectively. Region 𝐺 fits into (a union of) one of the following cases.

Case 1: 𝐺 is not connected and does not intersect with 𝐴1 ∪ 𝐴2 (see 𝐺1 in Figure 5-3 for an
example). In this case, the terms in the derivatives are

𝑑𝐾

𝑑𝑘1𝑧𝑖 . . . 𝑑𝑘𝑚𝑧𝑚
log
(︁
tr
[︁
𝑒−

∑︀𝑚
𝑖=1 𝑧𝑖𝐻𝑖𝑁2𝑁1

]︁)︁⃒⃒⃒
𝑧=0

=
𝑑𝐾

𝑑𝑘1𝑧𝑖 . . . 𝑑𝑘𝑚𝑧𝑚
log

⎛⎝tr[𝑁2] tr[𝑁1]
∏︁
𝑖:𝑘𝑖≥1

tr
[︀
𝑒−𝑧𝑖𝐻𝑖

]︀⎞⎠⃒⃒⃒
𝑧=0

=
𝑑𝐾

𝑑𝑘1𝑧𝑖 . . . 𝑑𝑘𝑚𝑧𝑚
log (tr[𝑁2] tr[𝑁1])

+
∑︁
𝑖:𝑘𝑖≥1

𝑑𝐾

𝑑𝑘1𝑧𝑖 . . . 𝑑𝑘𝑚𝑧𝑚
log
(︀
tr
[︀
𝑒−𝑧𝑖𝐻𝑖

]︀)︀⃒⃒⃒
𝑧=0

= 0. (5.63)

In the first line, we used the fact that sublattices 𝐴1, 𝐴2, and supp(𝐻𝑖) with 𝑘𝑖 ≥ 1 do not intersect.
The last line follows because tr[𝑁2] tr[𝑁1] is a constant, and tr

[︀
𝑒−𝑧𝑖𝐻𝑖

]︀
only depends on 𝑧𝑖 and its

derivative with respect to other 𝑧𝑖 is zero.

Case 2: 𝐺 is connected but does not intersect with 𝐴1 ∪ 𝐴2 (see 𝐺2 in Figure 5-3 for an
example). Similar to (5.63), we can still separate tr[𝑁2] tr[𝑁1] from the remaining terms and their
derivative is zero. Hence, we obtain

𝑑𝐾

𝑑𝑘1𝑧𝑖 . . . 𝑑𝑘𝑚𝑧𝑚
log
(︁
tr
[︁
𝑒−

∑︀𝑚
𝑖=1 𝑧𝑖𝐻𝑖𝑁2𝑁1

]︁)︁⃒⃒⃒
𝑧=0

=
𝑑𝐾

𝑑𝑘1𝑧𝑖 . . . 𝑑𝑘𝑚𝑧𝑚
log
(︁
tr
[︁
𝑒
−

∑︀
𝑖:𝑘𝑖≥1 𝑧𝑖𝐻𝑖

]︁)︁⃒⃒⃒
𝑧=0

.

(5.64)

Although this term does not necessarily equal zero, the derivatives of 𝑓(𝑧1, . . . , 𝑧𝑚) are combinations
of terms like Eq. (5.64). These terms are all equal as we can separate traces involving 𝑁2 and 𝑁1

using the same argument as above, but they appear with opposite signs and thus cancel each other.
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More precisely, we have

𝑑𝐾

𝑑𝑘1𝑧𝑖 . . . 𝑑𝑘𝑚𝑧𝑚
𝑓(𝑧1, . . . , 𝑧𝑚)

⃒⃒⃒
𝑧=0

=
𝑑𝐾

𝑑𝑘1𝑧𝑖 . . . 𝑑𝑘𝑚𝑧𝑚

(︁
log
(︁
tr[𝑁2𝑁1] tr

[︁
𝑒
−

∑︀
𝑖:𝑘𝑖≥1 𝑧𝑖𝐻𝑖

]︁)︁
− log

(︁
tr[𝑁2] tr

[︁
𝑒
−

∑︀
𝑖:𝑘𝑖≥1 𝑧𝑖𝐻𝑖

]︁)︁
− log

(︁
tr[𝑁1] tr

[︁
𝑒
−

∑︀
𝑖:𝑘𝑖≥1 𝑧𝑖𝐻𝑖

]︁)︁
+ log

(︁
tr
[︁
𝑒
−

∑︀
𝑖:𝑘𝑖≥1 𝑧𝑖𝐻𝑖

]︁)︁)︁⃒⃒⃒
𝑧=0

= 0. (5.65)

Case 3: 𝐺 is connected and intersects with 𝐴1 or 𝐴2, but not both (see 𝐺3 or 𝐺4 in Figure 5-3
for an example). Similar to Case 2, the derivatives of 𝑓(𝑧1, . . . , 𝑧𝑚) consist of equal terms with
opposite signs and therefore vanish. Here, we show the case where 𝐺 only intersects 𝐴2. The other
cases similarly follow.

𝑑𝐾

𝑑𝑘1𝑧𝑖 . . . 𝑑𝑘𝑚𝑧𝑚
𝑓(𝑧1, . . . , 𝑧𝑚)

⃒⃒⃒
𝑧=0

=
𝑑𝐾

𝑑𝑘1𝑧𝑖 . . . 𝑑𝑘𝑚𝑧𝑚

(︁
log
(︁
tr[𝑁1] tr

[︁
𝑒
−

∑︀
𝑖:𝑘𝑖≥1 𝑧𝑖𝐻𝑖𝑁2

]︁)︁
− log

(︁
tr
[︁
𝑒
−

∑︀
𝑖:𝑘𝑖≥1 𝑧𝑖𝐻𝑖𝑁2

]︁)︁
− log

(︁
tr[𝑁1] tr

[︁
𝑒
−

∑︀
𝑖:𝑘𝑖≥1 𝑧𝑖𝐻𝑖

]︁)︁
+ log

(︁
tr
[︁
𝑒
−

∑︀
𝑖:𝑘𝑖≥1 𝑧𝑖𝐻𝑖

]︁)︁)︁⃒⃒⃒
𝑧=0

= 0, (5.66)

in which the first two and last two terms cancel each other.

A similar argument shows that if the set 𝐺 is a union of any of the above cases, the derivatives
vanish as well.

Case 4: 𝐺 is connected and intersects with both 𝐴1 and 𝐴2 (see 𝐺5 in Figure 5-3 for an
example). Here, the cancellation that appeared in the other cases does not happen. Thus, this is
the only situation in which the derivatives are non-zero.

The important observation is that for Case 4 to happen, 𝐺 needs to be long enough to touch
both 𝐴1 and 𝐴2. Hence, if the number of 𝑧𝑖 with 𝑘𝑖 ≥ 1 is less than roughly dist(𝑂1, 𝑂2), their
corresponding derivative vanishes. Having all the criteria needed for applying Lemma 145, i.e
analyticity, boundedness, and zero derivatives, we can get the following bound on |𝑓(𝑧1, . . . , 𝑧𝑚)|
for some constant 𝑐 and 𝜉:

|𝑓(𝛽, . . . , 𝛽)| ≤ 𝑐𝑛𝑒−dist(𝑂1,𝑂2)/𝜉, (5.67)

which as explained before implies⃒⃒
tr [𝜌𝛽(𝐻)𝑂1𝑂2]− tr [𝜌𝛽(𝐻)𝑂1] tr [𝜌𝛽(𝐻)𝑂2]

⃒⃒
≤ 𝑐𝑛𝑒−dist(𝑂1,𝑂2)/𝜉. (5.68)

Due to the extra factor of 𝑛 in front of this bound, it implies the exponential decay of correlations
only when dist(𝑂1, 𝑂2) = Ω(log𝑛). ⊓⊔
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5.5.1 Tighter bounds for commuting Hamiltonians

Here we show how using the commutativity of 𝐻 enables us to remove the extra factor of 𝑛 in the
bound (5.67) that we derived for general Hamiltonians. We state this in the following theorem.

Theorem 149. Suppose 𝐻 is a geometrically-local Hamiltonian with mutually commuting terms
that satisfies Condition 1 for along [0, 𝛽]. Then the correlations between any two operators 𝑂1, 𝑂2

decay exponentially in the range [0, 𝛽] as in Condition 2.

Proof of Theorem 149. The proof of this theorem follows similar steps to that of Theorem 148.
A crucial difference, which is the only part where we use the commutativity of local terms 𝐻𝑖, is
the following. The Hamiltonian 𝐻 in states 𝜌𝛽(𝐻|𝑁2) and 𝜌𝛽(𝐻|1) involves terms acting on all 𝑛
sites in lattice Λ. In our analysis, we can essentially neglect the contribution of sites that are far
from both region 𝐴1 and 𝐴2. In other words, as shown in Figure 5-3, let 𝐵 ⊂ Λ be any region that
encloses the support of both 𝐴1 and 𝐴2. We restrict the Hamiltonian and states 𝜌𝛽(𝐻|𝑁2), 𝜌𝛽(𝐻|1)
to this region and include the effect of other sites by an operator acting on 𝜕𝐵, the boundary of
this enclosing region. We prove (5.58) for this smaller region. Without this step, we end up getting
an upper bound like 𝑐𝑛 exp(−dist(𝑂1, 𝑂2)/𝜉), which has an extra factor of 𝑛, the number of sites
in Λ, whereas with the restriction to the enclosing region, this factor is |𝐵|, the number of sites in
𝐵. For the example in Figure 5-3, the size |𝐵| = 𝑂(dist(𝑂1, 𝑂2)

𝐷) which is negligible compared to
the exponential decay factor 𝑒−dist(𝑂1,𝑂2)/𝜉. More formally, since 𝐻 is a commuting Hamiltonian,
we have 𝑒−𝛽𝐻 = 𝑒−𝛽𝐻𝐵𝑒−𝛽(𝐻−𝐻𝐵). Hence, we get

tr[𝜌𝛽(𝐻|𝑁2)𝑁1] =
tr[𝑒−𝛽𝐻𝑁2𝑁1]

tr[𝑒−𝛽𝐻𝑁2]

=
tr𝐵[𝑒

−𝛽𝐻𝐵 tr𝐵̄[𝑒
−𝛽(𝐻−𝐻𝐵)]𝑁2𝑁1]

tr𝐵[𝑒−𝛽𝐻𝐵 tr𝐵̄[𝑒
−𝛽(𝐻−𝐻𝐵)]𝑁2]

=
tr𝐵[𝑒

−𝛽𝐻𝐵𝜎𝑁2𝑁1]

tr𝐵[𝑒−𝛽𝐻𝐵𝜎𝑁2]

= tr[𝜌𝛽(𝐻𝐵|𝜎𝑁2)𝑁1], (5.69)

where

𝜎 =
tr𝐵̄[𝑒

−𝛽(𝐻−𝐻𝐵)]

tr𝐵̄∪𝜕𝐵̄[𝑒
−𝛽(𝐻−𝐻𝐵)]

(5.70)

is a state acting on the boundary 𝜕𝐵̄ 4. Thus, we can replace the operator 𝑁2 by 𝜎⊗𝑁2 acting on a
larger region 𝜕𝐵̄∪𝐴2 and restrict our attention to region 𝐵. We can now repeat the argument of The-
orem 148. Let the perturbed Hamiltonian restricted to region 𝐵 be 𝐻𝐵(𝑧⃗) =

∑︀
𝐻𝑖:supp(𝐻𝑖)⊂𝐵 𝑧𝑖𝐻𝑖,

where for simplicity, the number of local terms in 𝐻𝐵 is denoted again by 𝑚. By plugging (5.69)

4Based on our definition of the boundary of a region, the boundary 𝜕𝐵̄ is inside 𝐵.
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into (5.59), we see that the function 𝑓(𝑧1, . . . , 𝑧𝑚) is

𝑓(𝑧1, . . . , 𝑧𝑚) = log

(︂
tr[𝜌𝑧⃗(𝐻𝐵|𝜎𝑁2)𝑁1]

tr[𝜌𝑧⃗(𝐻𝐵|𝜎)𝑁1]

)︂
= log

(︃
tr[𝑒−𝛽𝐻𝐵(𝑧⃗)𝜎𝑁2𝑁1]

tr[𝑒−𝐻𝐵(𝑧⃗)𝜎𝑁2]

tr[𝑒−𝛽𝐻𝐵(𝑧⃗)𝜎]

tr[𝑒−𝛽𝐻𝐵(𝑧⃗)𝜎𝑁1]

)︃
(5.71)

The rest of the proof of Theorem 148 applies to this function. In particular, assuming Condition 1
holds, this function is bounded and analytic in Ω𝛿,𝛽, i.e. |𝑓(𝑧1, . . . , 𝑧𝑚)| ≤ 𝑐|𝐵|. Similarly, one can
see that the low-order derivatives of 𝑓(𝑧1, . . . , 𝑧𝑚) are zero. Since the distance between 𝜕𝐵 and 𝐴1

is still 𝑂(dist(𝑂1, 𝑂2)), Lemma 145 implies |𝑓(𝛽, . . . , 𝛽)| ≤ 𝑐|𝐵| exp(−dist(𝑂1, 𝑂2)/𝜉). Hence, we
have ⃒⃒

tr [𝜌𝛽(𝐻)𝑂1𝑂2]− tr [𝜌𝛽(𝐻)𝑂1] tr [𝜌𝛽(𝐻)𝑂2]
⃒⃒
≤ 𝑐|𝐵|𝑒−dist(𝑂1,𝑂2)/𝜉 (5.72)

⊓⊔

5.5.2 Tighter bounds for 1D Hamiltonians

Theorem 150. Let 𝐻 be a geometrically-local Hamiltonian on a 1𝐷 chain that satisfies Condition 1
along [0, 𝛽]. Then, the exponential decay of correlations given in Condition 2 also holds for this
Hamiltonian in the range [0, 𝛽].

Proof of Theorem 150. The proof is similar to that of Theorem 148 and Theorem 149. Recall
that an important step is to introduce boundary states 𝜎 that include the effect of terms in the
Hamiltonian 𝐻 that are acting on the boundary or outside of some region 𝐵. Region 𝐵 encloses
the support of operators whose correlations we want to bound. There, we use the commutativity of
𝐻 to find the boundary states 𝜎 which does not hold in general. Here, we show how, by using the
quantum belief propagation operator 𝜂 we introduced in Proposition 131, we can achieve the same
boundary state in 1D.

We do not go through all steps of the proof of Theorem 148 again. Instead, we directly show
that by restricting the Hamiltonian to region 𝐵 and adding the boundary terms, the covariance
in (5.52) changes negligibly. Then we apply bound (5.53) to this restricted covariance. Since the
number of particles inside 𝐵 is constant, instead of the extra factor of 𝑛, we get a constant prefactor
as desired.

Recall that using the belief propagation equation (5.14) and the bound (5.15), we can remove
the boundary terms 𝐻𝜕𝐵 acting between 𝐵, 𝐵̄ from the Gibbs state and get

tr[𝜌𝛽(𝐻)𝑂1𝑂2] = tr

[︂
𝑍𝛽(𝐻 −𝐻𝜕𝐵)

𝑍𝛽(𝐻)
𝜂𝜌𝛽(𝐻 −𝐻𝜕𝐵)𝜂

†𝑂1𝑂2

]︂
= tr

[︂
𝑍𝛽(𝐻 −𝐻𝜕𝐵)

𝑍𝛽(𝐻)
𝜂ℓ𝜌𝛽(𝐻 −𝐻𝜕𝐵)𝜂

†
ℓ𝑂1𝑂2

]︂
+ tr

[︂
𝑍𝛽(𝐻 −𝐻𝜕𝐵)

𝑍𝛽(𝐻)
𝜂ℓ𝜌𝛽(𝐻 −𝐻𝜕𝐵)(𝜂

† − 𝜂†ℓ)𝑂1𝑂2

]︂
+ tr

[︂
𝑍𝛽(𝐻 −𝐻𝜕𝐵)

𝑍𝛽(𝐻)
(𝜂 − 𝜂ℓ)𝜌𝛽(𝐻 −𝐻𝜕𝐵)𝜂

†𝑂1𝑂2

]︂
, (5.73)
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where in the second line, we replaced 𝜂 with the truncated operator 𝜂ℓ. To simplify this equation,
we absorb the coefficient 𝑍𝛽(𝐻 −𝐻𝜕𝐵)/𝑍𝛽(𝐻) into the operators 𝜂, 𝜂ℓ, and define

𝜂 =

(︂
𝑍𝛽(𝐻 −𝐻𝜕𝐵)

𝑍𝛽(𝐻)

)︂1/2

𝜂, 𝜂ℓ =

(︂
𝑍𝛽(𝐻 −𝐻𝜕𝐵)

𝑍𝛽(𝐻)

)︂1/2

𝜂ℓ. (5.74)

Hence, we have⃒⃒⃒
tr [𝜌𝛽(𝐻)𝑂1𝑂2]− tr

[︁
𝜂ℓ𝜌𝛽(𝐻 −𝐻𝜕𝐵)𝜂

†
ℓ𝑂1𝑂2

]︁⃒⃒⃒
≤
⃒⃒⃒
tr
[︁
𝜂𝜌𝛽(𝐻 −𝐻𝜕𝐵)(𝜂

† − 𝜂†ℓ)𝑂1𝑂2

]︁⃒⃒⃒
+
⃒⃒⃒
tr
[︁
(𝜂 − 𝜂ℓ)𝜌𝛽(𝐻 −𝐻𝜕𝐵)𝜂

†𝑂1𝑂2

]︁⃒⃒⃒
. (5.75)

According to (5.15), we have ||𝜂 − 𝜂ℓ|| ≤ 𝑒𝛼1|𝜕𝐵|−𝛼2ℓ and ||𝜂|| ≤ 𝑒𝛽/2||𝐻𝜕𝐵 ||. Also, Lemma 139 implies
𝑍𝛽(𝐻 −𝐻𝜕𝐵)/𝑍𝛽(𝐻) ≤ 𝑒𝛼3|𝜕𝐵| for some constant 𝛼3 that depends on the details of 𝐻. Using these
bounds as well as the Cauchy-Schwarz and Hölder inequalities, we get the following bound for some
constants 𝑐′ and 𝛼4:⃒⃒⃒

tr [𝜌𝛽(𝐻)𝑂1𝑂2]− tr
[︁
𝜂ℓ𝜌𝛽(𝐻 −𝐻𝜕𝐵)𝜂

†
ℓ𝑂1𝑂2

]︁⃒⃒⃒
≤ 2||𝑂1||||𝑂2||||𝜂 − 𝜂ℓ||||𝜂||
≤ 𝑐′𝑒−𝛼4ℓ. (5.76)

To arrive at the last line, we used the fact that |𝜕𝐵| in 1D is just a constant that depends on
the range of 𝐻, and we assumed the truncation length ℓ is sufficiently larger than |𝜕𝐵|.

Note that since we removed the boundary terms 𝐻𝜕𝐵, the Gibbs state decomposes into 𝜌𝛽(𝐻 −
𝐻𝜕𝐵) = 𝜌𝛽(𝐻𝐵̄)𝜌𝛽(𝐻𝐵), which allows us to write

tr
[︁
𝜂ℓ𝜌𝛽(𝐻 −𝐻𝜕𝐵)𝜂

†
ℓ𝑂1𝑂2

]︁
= tr [𝜌𝛽(𝐻𝐵)𝜎̃𝜕𝐵𝑂1𝑂2] , (5.77)

in which we assume region 𝐵 is chosen to be wide enough so that both 𝑂1, 𝑂2 are sufficiently far
from the boundary 𝜕𝐵 compared to length ℓ. This means 𝜂ℓ does not overlap with 𝑂1, 𝑂2. We also
define the unnormalized boundary state 𝜎̃𝜕𝐵 by

𝜎̃𝜕𝐵 = 𝜂†ℓ𝜂ℓ tr𝐵̄∖supp(𝜂ℓ)[𝜌𝛽(𝐻𝐵̄)]. (5.78)

Notice that 𝜎̃𝜕𝐵 is a PSD matrix. To see why, we use the fact that tr𝐵̄∖supp(𝜂ℓ)[𝜌𝛽(𝐻𝐵̄)] is a PSD
matrix and hence can be written as 𝑊𝑊 † for some operator 𝑊 supported on supp(𝜂ℓ) ∩ 𝐵̄. Then
it is not hard to see that for any state |𝜑⟩, we have

⟨𝜑|𝜎̃𝜕𝐵|𝜑⟩ =
dim(supp(𝑊 ))∑︁

𝑖=1

⟨𝑖|𝑊 †⟨𝜑|𝜂†ℓ𝜂ℓ𝑊 |𝑖⟩|𝜑⟩ ≥ 0. (5.79)

Overall, we have

|tr [𝜌𝛽(𝐻)𝑂1𝑂2]− tr [𝜌𝛽(𝐻𝐵)𝜎̃𝜕𝐵𝑂1𝑂2]| ≤ 𝑐′𝑒−𝛼4ℓ. (5.80)

Similarly, we can replace tr[𝜌𝛽(𝐻)𝑂𝑖] with tr[𝜌𝛽(𝐻𝐵)𝜎̃𝜕𝐵𝑂𝑖] up to an exponentially small error in
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ℓ,

|tr [𝜌𝛽(𝐻)𝑂𝑖]− tr [𝜌𝛽(𝐻𝐵)𝜎̃𝜕𝐵𝑂𝑖]| ≤ 𝑐′𝑒−𝛼4ℓ, 𝑖 ∈ {1, 2}. (5.81)

We can now plug these expressions into the covariance (5.52). Since || tr[𝜌𝛽(𝐻𝐵)𝜎̃𝜕𝐵𝑂𝑖]|| is just a
constant, we see that there exist constants 𝑐′′ and 𝛼5 such that⃒⃒
tr [𝜌𝛽(𝐻)𝑂1𝑂2]− tr [𝜌𝛽(𝐻)𝑂1] tr [𝜌𝛽(𝐻)𝑂2]

⃒⃒
=
⃒⃒ (︁

tr [𝜌𝛽(𝐻𝐵)𝜎̃𝜕𝐵𝑂1𝑂2] + 𝑐′𝑒−𝛼4ℓ
)︁
−
(︁
tr [𝜌𝛽(𝐻𝐵)𝜎̃𝜕𝐵𝑂1]− 𝑐′𝑒−𝛼4ℓ

)︁(︁
tr [𝜌𝛽(𝐻)𝜎̃𝜕𝐵𝑂2]− 𝑐′𝑒−𝛼4ℓ

)︁ ⃒⃒
≤
⃒⃒
tr [𝜌𝛽(𝐻𝐵)𝜎̃𝜕𝐵𝑂1𝑂2]− tr [𝜌𝛽(𝐻𝐵)𝜎̃𝜕𝐵𝑂1] tr [𝜌𝛽(𝐻)𝜎̃𝜕𝐵𝑂2]

⃒⃒
+ 𝑐′′𝑒−𝛼5ℓ. (5.82)

Using a similar approach that led to the bound (5.53) proved in Theorem 148, we get⃒⃒
tr [𝜌𝛽(𝐻𝐵)𝜎̃𝜕𝐵𝑂1𝑂2]− tr [𝜌𝛽(𝐻𝐵)𝜎̃𝜕𝐵𝑂1] tr [𝜌𝛽(𝐻)𝜎̃𝜕𝐵𝑂2]

⃒⃒
≤ 𝑐|𝐵|𝑒−dist(𝑂1,𝑂2)/𝜉. (5.83)

Combined with (5.82), we have⃒⃒
tr [𝜌𝛽(𝐻)𝑂1𝑂2]− tr [𝜌𝛽(𝐻)𝑂1] tr [𝜌𝛽(𝐻)𝑂2]

⃒⃒
≤ 𝑐|𝐵|𝑒−dist(𝑂1,𝑂2)/𝜉 + 𝑐′′𝑒−𝛼5ℓ. (5.84)

Since all the coefficients in the bound on the right-hand side are constants, it suffices to choose ℓ
large enough so that it is negligible compared to the |𝐵|𝑒−dist(𝑂1,𝑂2)/𝜉 term. This is possible because
we assumed 𝜕𝐶 is sufficiently (but still only constantly) far from 𝑂1, 𝑂2. This allows us to get a
bound that does not depend on 𝑛 as before, hence finishing the proof. ⊓⊔

Remark 151. Recall that from (5.15) we know that the error of truncating the belief propagation
operator 𝜂 is ⃒⃒⃒⃒

𝜂 − 𝜂ℓ
⃒⃒⃒⃒
≤ 𝑒𝛼1|𝜕𝐵|−𝛼2ℓ. (5.85)

In our setting, the dependence of the error bound on 𝑒𝛼1|𝜕𝐵| makes this result only be applicable when
Λ is a 1D lattice. Otherwise, since |𝜕𝐵| is proportional to diam(𝐵)𝐷−1, we cannot choose length ℓ
small enough compared to diam(𝐵). Hence, we do not get a local operator as required.

5.6 Exponential decay of correlations implies analyticity

In this section, we focus on the converse of Theorem 148. In Section 5.5, we showed that the
exponential decay of correlations is a necessary condition for the analyticity of the free energy. In
this section, we ask if this condition is also sufficient for the analyticity. This was first established for
classical systems by Dobrushin and Shlosman [DS87]. It appears that the quantum generalization of
that proof requires the development of new tools. The goal in this section is to identify these tools.
Our contribution is to extend the result of [DS87] to classical systems that are not translationally
invariant and express the proof in a language that is suitable for the quantum case.

Here, for clarity, we consider a simpler version of Condition 1 that is stated below:

Condition 1’ (Analyticity of the free energy). The free energy of a geometrically-local Hamiltonian
𝐻 is 𝛿-analytic at inverse temperature 𝛽 ∈ R+ if for all 𝛽′ ∈ C such that |𝛽′ − 𝛽| ≤ 𝛿, the free
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energy is analytic and there exists a constants 𝑐 such that⃒⃒⃒
log
(︁
tr
[︁
𝑒−𝛽

′𝐻
]︁)︁⃒⃒⃒

≤ 𝑐𝑛. (5.86)

Recall that in Condition 1, we assumed that the free energy of a post-selected state is analytic
and bounded. In comparison, Condition 1’ only includes partition functions with an open boundary
condition. For algorithmic purposes, like the one in Section 5.3, this version is sufficient. How-
ever, with small modifications, the same proof can be adapted to show Condition 1 with arbitrary
boundary conditions.

Our goal is to derive Condition 1’ assuming that the correlations in the system decay exponen-
tially. We restate this condition for convenience.

Restatement of Condition 2. The correlations in the Gibbs state 𝜌𝛽(𝐻) of a geometrically-local
Hamiltonian decay exponentially if for any local Hermitian operators 𝑂1 and 𝑂2 and any region 𝐵
such that supp(𝑂1), supp(𝑂2) ⊂ 𝐵, there exist constants 𝜉 and 𝑐 such that⃒⃒

tr [𝜌𝛽(𝐻)𝑂1𝑂2]− tr [𝜌𝛽(𝐻)𝑂1] tr [𝜌𝛽(𝐻)𝑂2]
⃒⃒
≤ 𝑐|𝐵|||𝑂1||||𝑂2||𝑒−dist(𝑂1,𝑂2)/𝜉. (5.87)

Remark 152. Technically, we use a stronger version of Condition 2 in our proof which is often
called strong spatial mixing. Under this condition, when we set two boundary conditions, their effect
on a distant site decays exponentially with the distance from the part of the boundary where the two
different boundary conditions differ rather than with the distance from the whole boundary.

Although we consider classical systems, we find it more convenient to continue using quantum
notation. This also makes it easier to point out where the proof breaks for quantum systems. The
reader, however, should note that the terms in the Hamiltonian are all diagonal in a product basis
and the projector operators we use basically fix the value of classical spins.

More formally, we prove the following theorem in this section.

Theorem 153 (The decay of correlations implies analyticity for classical systems). Let 𝐻 =∑︀𝑚
𝑖=1𝐻𝑖 be a geometrically-local Hamiltonian of a classical spin system, i.e. the local terms 𝐻𝑖

are all diagonal in the same product basis. For such a system, the exponential decay of correlations
given in Condition 2 implies analyticity of the free energy in Condition 1’.

We prove this theorem in multiple steps that are formulated in Propositions 154, 155, and 157.
An outline of the proof is given in Figure 5-4. It turns out that Proposition 154 and Proposition 155
continue to hold for commuting Hamiltonians, so we give their statements and proofs for these
Hamiltonians. However, for reasons to be highlighted in its proof, Proposition 157 only holds for
classical systems.

Proof of Theorem 153. The proof is immediate from the combination of Proposition 155, Propo-
sition 154, and Proposition 157. ⊓⊔

5.6.1 Step 1: Condition 1’ from the complex site removal bound

Our first step, stated in Proposition 154, is to show how a variant of the complex site removal
bound that we discussed in Section 5.4 allows us to find an upper bound on the absolute value
of the free energy as in Condition 1’. Compared to the bound (5.25) in Section 5.4, this variant
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Condition 1’
Analyticity of the free energy

Complex site removal bound (5.88)

Small relative phase with
different boundary conditions (5.99)

Condition 2
Exponential decay of correlations

Proposition 154

Proposition 155

Proposition 157

Figure 5-4: The structure of the proof of Theorem 153. We follow a series of reductions to show
Condition 1’.

includes setting a non-trivial boundary condition after removing a subset of lattice sites. To avoid
subtleties arising from entangled boundary conditions and projectors, we need to give a slightly
different proof compared to what we did before (5.24).

Proposition 154 (Condition 1’ from the complex site removal bound). Let 𝐻 =
∑︀𝑚

𝑘=1𝐻𝑘 be a
geometrically-local Hamiltonian with mutually commuting terms on lattice Λ. Let 𝑃 be a projector
acting on 𝜕𝐴 where 𝐴 ⊂ Λ is a region of constant size5. We denote the terms in 𝐻 acting on 𝐴 or
𝜕𝐴 by 𝐻 ′ and the real and imaginary parts of 𝛽 ∈ C by 𝛽𝑟 and 𝛽𝑖. Suppose when |𝛽𝑖| ≤ 𝛿 for some
sufficiently small 𝛿, there exists a constant 𝑐 such that⃒⃒⃒⃒

log

(︂
tr𝐴∪𝐴[𝑒

−𝛽𝐻 ]

tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]

)︂⃒⃒⃒⃒
≤ 𝑐. (5.88)

Then,

i. The observables supported on 𝐴 like 𝐻𝐴 have bounded expectations with respect to the complex
perturbed Gibbs state 𝜌𝛽(𝐻). That is, there exists a constant 𝑐′ such that | tr [𝐻𝐴𝜌𝛽(𝐻)] | ≤
𝑐′||𝐻𝐴||.

ii. Condition 1’ holds for this system.

Proof of Proposition 154. By using Lemma 139, we have | log(tr[𝑒−𝛽𝑟𝐻 ])| ≤ 𝑂(𝑛). Hence to

5Recall 𝜕𝐴 is the boundary of 𝐴 and is inside 𝐴. For a (𝜅,𝑅)-local 𝐻, 𝜕𝐴 = {𝑣 ∈ Λ∖𝐴 : ∃𝑣′ ∈ 𝐴, dist(𝑣−𝑣′) ≤ 𝑅}.
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show (5.86), it is sufficient to show that⃒⃒⃒⃒
log

(︂
tr[𝑒−𝛽𝐻 ]

tr[𝑒−𝛽𝑟𝐻 ]

)︂⃒⃒⃒⃒
≤ 𝑐𝑛. (5.89)

The difference between the numerator and denominator of (5.89) is the addition of the complex
perturbations 𝛽𝑖𝐻 =

∑︀𝑚
𝑘=1 𝛽𝑖𝐻𝑘 to the exponent of the numerator. Instead of adding these terms

all together, we can add local terms 𝛽𝑖𝐻𝑘 step by step. We do this by setting up a telescoping series
of products such that in each fraction, a new term 𝛽𝑖𝐻𝑘 is added. We have

tr[𝑒−𝛽𝐻 ]

tr[𝑒−𝛽𝑟𝐻 ]
=

tr[𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖
∑︀𝑚

𝑘=1𝐻𝑘 ]

tr[𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖
∑︀𝑚−1

𝑘=1 𝐻𝑘 ]

tr[𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖
∑︀𝑚−1

𝑘=1 𝐻𝑘 ]

tr[𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖
∑︀𝑚−2

𝑘=1 𝐻𝑘 ]
. . .

tr[𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖𝐻1 ]

tr[𝑒−𝛽𝑟𝐻 ]
. (5.90)

Hence, ⃒⃒⃒⃒
log

(︂
tr[𝑒−𝛽𝐻 ]

tr[𝑒−𝛽𝑟𝐻 ]

)︂⃒⃒⃒⃒
≤

𝑚−1∑︁
𝑗=0

⃒⃒⃒⃒
⃒log

(︃
tr[𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖

∑︀𝑗+1
𝑘=0𝐻𝑘 ]

tr[𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖
∑︀𝑗

𝑘=0𝐻𝑘 ]

)︃⃒⃒⃒⃒
⃒ , (5.91)

in which we set 𝐻0 = 0. Since for interactions considered in this paper 𝑚 = 𝑂(𝑛), we can derive
the bound in (5.99) by showing for any 𝑗,⃒⃒⃒⃒

⃒log
(︃
tr[𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖

∑︀𝑗+1
𝑘=0𝐻𝑘 ]

tr[𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖
∑︀𝑗

𝑘=0𝐻𝑘 ]

)︃⃒⃒⃒⃒
⃒ ≤ 𝑂(1). (5.92)

To do so, we define 𝛾𝑗(𝑡) for 𝑡 ∈ [0, 1] to be

𝛾𝑗(𝑡) = log
(︁
tr[𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖

∑︀𝑗
𝑘=0𝐻𝑘−𝑖𝛽𝑖𝑡𝐻𝑗+1)]

)︁
. (5.93)

Then, the left hand side of (5.92) can be written as⃒⃒⃒⃒
⃒log

(︃
tr[𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖

∑︀𝑗+1
𝑘=0𝐻𝑘 ]

tr[𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖
∑︀𝑗

𝑘=0𝐻𝑘 ]

)︃⃒⃒⃒⃒
⃒ = |𝛾𝑗(1)− 𝛾𝑗(0)|

≤ max
𝑡∈[0,1]

⃒⃒⃒⃒
𝑑𝛾𝑗(𝑡)

𝑑𝑡

⃒⃒⃒⃒
= |𝛽𝑖| max

𝑡∈[0,1]

⃒⃒⃒⃒
⃒tr[𝐻𝑗+1𝑒

−𝑖𝑡𝛽𝑖𝐻𝑗+1𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖
∑︀𝑗

𝑘=0𝐻𝑘 ]

tr[𝑒−𝑖𝑡𝛽𝑖𝐻𝑗+1𝑒−𝛽𝑟𝐻−𝑖𝛽𝑖
∑︀𝑗

𝑘=0𝐻𝑘 ]

⃒⃒⃒⃒
⃒ . (5.94)

For a region 𝐴 ⊂ Λ, let 𝐻𝐴 and 𝐻 ′ be parts of the Hamiltonian acting on 𝐴 and 𝐴∪𝜕𝐴, respectively.
One can see that for any choice of 𝑗 and 𝑡, finding an upper bound like the one in (5.94) is equivalent
to bounding a local expectation term like

tr

[︃
𝐻𝐴𝑒

−(𝛽𝑟+𝑖𝑡𝛽𝑖)𝐻𝐴
𝑒−𝛽𝐻

′

𝑍𝛽(𝐻)

]︃
= tr[𝐻𝐴𝜌𝛽(𝐻)] (5.95)

for some suitable choice of 𝐴. We also assume, without loss of generality, that all local terms in 𝐻 ′
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are complex perturbed. Using the Hölder inequality, we get⃒⃒⃒⃒
⃒tr
[︃
𝐻𝐴𝑒

−(𝛽𝑟+𝑖𝑡𝛽𝑖)𝐻𝐴
𝑒−𝛽𝐻

′

𝑍𝛽(𝐻)

]︃⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒tr𝐴

[︃
𝐻𝐴𝑒

−(𝛽𝑟+𝑖𝑡𝛽𝑖)𝐻𝐴
tr𝐴[𝑒

−𝛽𝐻′
]

𝑍𝛽(𝐻)

]︃⃒⃒⃒⃒
⃒

≤ ||𝐻𝐴||𝑒|𝛽|||𝐻𝐴||𝑑|𝜕𝐴|
⃒⃒⃒⃒⃒⃒ tr𝐴[𝑒−𝛽𝐻′

]

𝑍𝛽(𝐻)

⃒⃒⃒⃒⃒⃒
. (5.96)

Since |𝐴| = 𝑂(1), we only need to upper bound the largest singular value of tr𝐴[𝑒
−𝛽𝐻′

]/𝑍𝛽(𝐻),
whose support is only on 𝜕𝐴, by a constant. Let |𝑢⟩ and |𝑣⟩ be the left and right singular vectors
associated with the largest singular value. We claim that there exists a rank 1 projector 𝑃 supported
on 𝜕𝐴 such that ⃒⃒⃒⃒⃒⃒ tr𝐴[𝑒−𝛽𝐻′

]

𝑍𝛽(𝐻)

⃒⃒⃒⃒⃒⃒
= tr𝜕𝐴

[︃
tr𝐴[𝑒

−𝛽𝐻′
]

𝑍𝛽(𝐻)
|𝑢⟩⟨𝑣|

]︃

≤ (2 +
√
2)

⃒⃒⃒⃒
⃒tr𝐴∪𝜕𝐴

[︃
𝑒−𝛽𝐻

′

𝑍𝛽(𝐻)
𝑃

]︃⃒⃒⃒⃒
⃒ . (5.97)

This can be derived by noting that |𝑢⟩⟨𝑣| can be decomposed as sum of rank 1 projectors as follows

|𝑢⟩⟨𝑣| = −1 + 𝑖

2
(|𝑢⟩⟨𝑢|+ |𝑣⟩⟨𝑣|) + 𝑖|𝑤−⟩⟨𝑤−|+ |𝑤+⟩⟨𝑤+|, (5.98)

where |𝑤+⟩ = 1√
2
(|𝑢⟩+ |𝑣⟩) and |𝑤−⟩ = 1√

2
(|𝑢⟩+ 𝑖|𝑣⟩).

Finally, using the premise of this proposition given in (5.88), we get both (154) and Condition 1’,
which concludes the proof. ⊓⊔

5.6.2 Step 2: The complex site removal bound from the small relative phase
condition

Proposition 155. Consider the same setup as that of Proposition 154. Let 𝑃 and 𝑄 be projectors
acting on 𝜕𝐴. Let 𝜃(𝛿) be a complex function depending on 𝐻, 𝑃 , and 𝑄, but constant in 𝑛 such
that for any positive constant 𝑐, 𝑐|𝜃(𝛿)| ≥ 𝛿 for sufficiently small 𝛿. We can, for instance, assume
|𝜃(𝛿)| =

√
𝛿. Suppose when |𝛽𝑖| ≤ 𝛿 for some sufficiently small 𝛿, we have

tr𝐴∪𝜕𝐴[𝑒
−𝑖𝛽𝑖𝐻′

𝜌𝛽𝑟(𝐻
′|𝑃 )]

tr𝐴∪𝜕𝐴[𝑒
−𝑖𝛽𝑖𝐻′𝜌𝛽𝑟(𝐻

′|𝑄)]
= 1 + |𝜕𝐴|𝜃(𝛿). (5.99)

Then, the complex site removal bound (5.88) given in Proposition 154 holds, i.e.⃒⃒⃒⃒
⃒log

(︃
tr𝐴∪𝐴

[︀
𝑒−𝛽𝐻

]︀
tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]

)︃⃒⃒⃒⃒
⃒ ≤ 𝑐. (5.100)

Before getting to the proof of this proposition, we first state and prove a relevant lemma.

Lemma 156. Consider the same definitions as in Proposition 155. The ratio of the unperturbed
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partition functions (with real 𝛽) with different boundary conditions can be bounded as⃒⃒⃒⃒
⃒⃒log

⎛⎝tr𝐴∪𝜕𝐴

[︁
𝑒−𝛽𝑟𝐻

′
𝑄
]︁

tr𝐴∪𝜕𝐴 [𝑒−𝛽𝑟𝐻′𝑃 ]

⎞⎠⃒⃒⃒⃒⃒⃒ ≤ 𝑐′ (5.101)

for some constant 𝑐′ depending on |𝜕𝐴|.

Proof of Lemma 156. Let 𝐻𝐴 be terms in 𝐻 ′ that are acting solely on 𝐴. That is, the sup-
port of 𝐻𝐴 does not overlap that of 𝑃 and 𝑄. This means for instance, tr𝐴∪𝜕𝐴

[︀
𝑒−𝛽𝑟𝐻𝐴𝑄

]︀
=

tr𝐴
[︀
𝑒−𝛽𝑟𝐻𝐴

]︀
tr[𝑄]. We have

tr𝐴∪𝜕𝐴

[︁
𝑒−𝛽𝑟𝐻

′
𝑄
]︁

tr𝐴∪𝜕𝐴 [𝑒−𝛽𝑟𝐻′𝑃 ]
=

tr𝜕𝐴[𝑄]

tr𝜕𝐴[𝑃 ]

tr𝐴∪𝜕𝐴

[︁
𝑒−𝛽𝑟𝐻

′
𝑄
]︁

tr𝐴∪𝜕𝐴
[︀
𝑒−𝛽𝑟𝐻𝐴𝑄

]︀ tr𝐴∪𝜕𝐴 [︀𝑒−𝛽𝑟𝐻𝐴𝑃
]︀

tr𝐴∪𝜕𝐴 [𝑒−𝛽𝑟𝐻′𝑃 ]
. (5.102)

The first ration on the RHS of (5.102) can be bounded as | log(tr[𝑄]/ tr[𝑃 ])| ≤ 𝑂(|𝜕𝐴|). For the
remaining two ratios we have⃒⃒⃒⃒
⃒⃒log

⎛⎝ tr𝐴∪𝜕𝐴

[︁
𝑒−𝛽𝑟𝐻

′
𝑃
]︁

tr𝐴∪𝜕𝐴
[︀
𝑒−𝛽𝑟𝐻𝐴𝑃

]︀
⎞⎠⃒⃒⃒⃒⃒⃒ = ⃒⃒⃒⃒∫︁ 1

0
𝑑𝑡
𝑑

𝑑𝑡
log
(︁
tr𝐴∪𝜕𝐴

[︁
𝑒−𝛽𝑟(𝐻𝐴+𝑡(𝐻′−𝐻𝐴))𝑃

]︁)︁⃒⃒⃒⃒

≤ max
𝑡∈[0,1]

⃒⃒⃒⃒
⃒⃒tr𝐴∪𝜕𝐴

[︁
−𝛽𝑟(𝐻 ′ −𝐻𝐴)𝑒

−𝛽𝑟(𝐻𝐴+𝑡(𝐻′−𝐻𝐴))𝑃
]︁

tr𝐴∪𝜕𝐴
[︀
𝑒−𝛽𝑟(𝐻𝐴+𝑡(𝐻′−𝐻𝐴))𝑃

]︀
⃒⃒⃒⃒
⃒⃒

≤ max
𝑡∈[0,1]

⃒⃒⃒⃒
⃒⃒tr𝐴∪𝜕𝐴

[︁
−𝛽𝑟(𝐻 ′ −𝐻𝐴)𝑒

−𝛽𝑟
2
(𝐻𝐴+𝑡(𝐻′−𝐻𝐴))𝑃𝑒−

𝛽𝑟
2
(𝐻𝐴+𝑡(𝐻′−𝐻𝐴))

]︁
tr𝐴∪𝜕𝐴

[︁
𝑒−

𝛽𝑟
2
(𝐻𝐴+𝑡(𝐻′−𝐻𝐴))𝑃𝑒−

𝛽𝑟
2
(𝐻𝐴+𝑡(𝐻′−𝐻𝐴))

]︁
⃒⃒⃒⃒
⃒⃒

≤
⃒⃒⃒⃒
𝛽𝑟(𝐻

′ −𝐻𝐴)
⃒⃒⃒⃒
≤ 𝛽𝑟𝑂(|𝜕𝐴|)ℎ (5.103)

Similarly, we can exchange the role of 𝑃 and 𝑄 to get a similar bound for 𝑄. All these bounds
together imply the bound (5.101). ⊓⊔

Proof of Proposition 155. We show how assuming equation (5.99), we can derive a lower and
an upper bound for ⃒⃒⃒⃒

⃒ tr𝐴∪𝐴
[︀
𝑒−𝛽𝐻

]︀
tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]

⃒⃒⃒⃒
⃒ . (5.104)

We decompose the expression (5.104) into two parts denoted by 𝐿1 and 𝐿2 as follows

tr𝐴∪𝐴
[︀
𝑒−𝛽𝐻

]︀
tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]

= tr𝐴

⎡⎣𝑒−𝑖𝛽𝑖𝐻𝐴𝑒−𝛽𝑟𝐻𝐴

tr𝐴

[︁
𝑒−𝛽𝐻

′
]︁

tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]

⎤⎦
= 𝐿1 + 𝐿2, (5.105)
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where

𝐿1 = tr𝐴

⎡⎣𝑒−𝛽𝑟𝐻𝐴

tr𝐴

[︁
𝑒−𝛽𝐻

′
]︁

tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]

⎤⎦ (5.106)

𝐿2 = tr𝐴

⎡⎣(𝑒−𝑖𝛽𝑖𝐻𝐴 − 1)𝑒−𝛽𝑟𝐻𝐴

tr𝐴

[︁
𝑒−𝛽𝐻

′
]︁

tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]

⎤⎦ . (5.107)

All the complex perturbations acting on 𝐴 are moved to the second part 𝐿2 which is analyzed later
and shown to have only a small contribution.

Let {|𝜓𝑘⟩} be the set of eigenstates of the operator 𝐻𝐴 that span the Hilbert space of 𝐴. The
term 𝐿1 can be written as

𝐿1 =
∑︁
𝑘

⟨𝜓𝑘|𝑒−𝛽𝑟𝐻𝐴 |𝜓𝑘⟩

⎡⎣tr𝐴∪𝐴
[︁
𝑒−𝛽𝐻

′ |𝜓𝑘⟩⟨𝜓𝑘|
]︁

tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]

⎤⎦
=
∑︁
𝑘

𝑒𝑘

⎡⎣tr𝐴∪𝜕𝐴
[︁
𝑒−𝛽𝐻

′
tr𝐴∖𝜕𝐴 |𝜓𝑘⟩⟨𝜓𝑘|

]︁
tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]

⎤⎦
=
∑︁
𝑗,𝑘

𝑒𝑘𝑟𝑗,𝑘

⎡⎣tr𝐴∪𝜕𝐴
[︁
𝑒−𝛽𝐻

′
𝑄𝑗,𝑘

]︁
tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]

⎤⎦ , (5.108)

where the first line follows from {|𝜓𝑘⟩} spanning the Hilbert space of 𝐴. In the second line,
we denoted ⟨𝜓𝑘|𝑒−𝛽𝑟𝐻𝐴 |𝜓𝑘⟩ by positive coefficients 𝑒𝑘. In the last line, we used the fact that
tr𝐴∖𝜕𝐴 |𝜓𝑘⟩⟨𝜓𝑘| is a density operator on 𝜕𝐴 and can be decomposed into a convex combination of
projectors 𝑄𝑗,𝑘 supported on 𝜕𝐴 with positive coefficients 𝑟𝑗,𝑘. In other words,

tr𝐴∖𝜕𝐴 |𝜓𝑘⟩⟨𝜓𝑘| =
∑︁
𝑗

𝑟𝑗,𝑘𝑄𝑗,𝑘. (5.109)

From the assumption of the theorem given in (5.99) we get⎡⎣tr𝐴∪𝜕𝐴
[︁
𝑒−𝛽𝐻

′
𝑄𝑗,𝑘

]︁
tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]

⎤⎦ = 𝛼𝑗,𝑘
(︀
1 + |𝜕𝐴|𝜃𝑗,𝑘(𝛿)

)︀
, (5.110)

where

𝛼𝑗,𝑘 =
tr𝐴∪𝜕𝐴

[︁
𝑒−𝛽𝑟𝐻

′
𝑄𝑗,𝑘

]︁
tr𝐴∪𝜕𝐴 [𝑒−𝛽𝑟𝐻′𝑃 ]

(5.111)

is the ratio of the real partition functions, and according to Lemma 156,

| log𝛼𝑗,𝑘| ≤ 𝑂(|𝜕𝐴|). (5.112)
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Hence, we get the following expression for 𝐿1:

𝐿1 =
∑︁
𝑗,𝑘

𝛼𝑗,𝑘𝑟𝑗,𝑘𝑒𝑘
(︀
1 + |𝜕𝐴|𝜃𝑗,𝑘(𝛿)

)︀
. (5.113)

This allows us to find a lower bound on this term. Since all coefficients 𝛼𝑗,𝑘, 𝑟𝑗,𝑘, and 𝑒𝑘 are positive
constants, Eq. (5.113) is sum of complex numbers with various magnitudes that have small complex
phases at most proportional to |𝜕𝐴|𝜃𝑗,𝑘(𝛿). The absolute value of the sum of these complex numbers
is at least the sum of their real parts. In particular, since 𝐴 is a region of constant size, by choosing
a sufficiently small 𝛿 such that 𝛿|𝜕𝐴| ≪ 1, we can ensure that the real parts are all positive and
add up to some non-zero value. More precisely,

|𝐿1| ≥

⎛⎝∑︁
𝑗,𝑘

𝛼𝑗,𝑘𝑟𝑗,𝑘𝑒𝑘

⎞⎠ cos
(︀
𝑐′′|𝜕𝐴|𝜃(𝛿)

)︀
≥ Ω(1) for 𝛿 ≪ |𝜕𝐴|. (5.114)

We can also get an upper bound on |𝐿1| using the expression (5.113). We have

|𝐿1| ≤
(︀
1 + |𝜕𝐴|

)︀⎛⎝∑︁
𝑗,𝑘

𝛼𝑗,𝑘𝑟𝑗,𝑘𝑒𝑘

⎞⎠ ≤ 𝑂(1) (5.115)

Now, we look at the second term 𝐿2. Similar to the previous bound, we can find a projector 𝑄
and a constant 𝑐′ such that

|𝐿2| =

⃒⃒⃒⃒
⃒⃒tr𝐴

⎡⎣(𝑒−𝑖𝛽𝑖𝐻𝐴 − 1)𝑒−𝛽𝑟𝐻𝐴

tr𝐴

[︁
𝑒−𝛽𝐻

′
]︁

tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]

⎤⎦⃒⃒⃒⃒⃒⃒ ≤ ||𝑒−𝑖𝛽𝑖𝐻𝐴 − 1||||𝑒−𝛽𝑟𝐻𝐴 ||

⃒⃒⃒⃒⃒⃒
tr𝐴

[︁
𝑒−𝛽𝐻

′
]︁ ⃒⃒⃒⃒⃒⃒

1

|tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]|

≤ 𝑐′𝛿||𝐻𝐴||𝑑|𝜕𝐴|𝑒|𝛽|||𝐻𝐴||. (5.116)

We used a bound similar to (5.110) to get to the last line.
All bounds (5.114), (5.115), and (5.116) depend on |𝐴| which is a constant. Also, as 𝛿 is made

smaller, (5.116) becomes negligible compared to (5.114) or (5.115). Hence, if 𝛿 is chosen to be
sufficiently small yet still a constant, we get the desired bounds:

𝑂(1) ≥ |𝐿1|+ |𝐿2| ≥

⃒⃒⃒⃒
⃒⃒ tr𝐴

[︁
𝑒−𝛽𝐻

′
]︁

tr𝐴∪𝜕𝐴 [𝑒−𝛽𝐻′𝑃 ]

⃒⃒⃒⃒
⃒⃒ ≥ |𝐿1| − |𝐿2| ≥ Ω(1). (5.117)

⊓⊔

5.6.3 Step 3: The small relative phase condition from Condition 2

Proposition 157. Let 𝐻 =
∑︀𝑚

𝑖=1𝐻𝑖 be a geometrically-local Hamiltonian of a classical spin system.
Suppose the correlations in this system decay exponentially as in Condition 2. Then, the bound given
in (5.99) holds for this system.

Proof of Proposition 157. The proof is by induction. The lattice Λ is already divided into
regions 𝐴 and 𝐴 according to Propositions 154 and 155. We further split the region 𝐴 ∪ 𝜕𝐴 into
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a constant region 𝐵 and its complement 𝐵̄. For reasons that will become clear shortly, it suffices
to fix an arbitrary site 𝑥 on 𝜕𝐴 and choose region 𝐵 such that dist(𝜕𝐵̄, 𝑥) ≫ 𝜉, where 𝜉 is the
correlation length in Condition 2. We assume inductively that (5.99) holds for 𝐵̄. Then, using the
decay of correlations, we show that even after adding the contribution of region 𝐵, Equation (5.99)
still holds for the region 𝐴 ∪ 𝜕𝐴 = 𝐵 ∪ 𝐵̄.

Since we are considering classical systems, the projectors 𝑃 and 𝑄 set the value of the boundary
spins, each of which attains 𝑑 distinct states, to some fixed values denoted by strings 𝑠𝑝 and 𝑠𝑞,
where 𝑠𝑝 or 𝑞 ∈ [𝑑]|𝜕𝐴|. Hence, 𝑃 = |𝑠𝑝⟩⟨𝑠𝑝| and 𝑄 = |𝑠𝑞⟩⟨𝑠𝑞|. Assume 𝑠𝑝 and 𝑠𝑞 differ on 𝑡 sites.
Consider a series of strings 𝑠1, . . . , 𝑠𝑡 such that 𝑠1 = 𝑠𝑝, 𝑠𝑡 = 𝑠𝑞, and 𝑠𝑖 and 𝑠𝑖+1 differ only on one
site. Denote the corresponding projectors by 𝑃1, 𝑃2, . . . , 𝑃𝑡. We can set up a telescoping product
for (5.99) as follows:

tr𝐴∪𝜕𝐴[𝑒
−𝑖𝛽𝑖𝐻′

𝜌𝛽𝑟(𝐻
′|𝑃 )]

tr𝐴∪𝜕𝐴[𝑒
−𝑖𝛽𝑖𝐻′𝜌𝛽𝑟(𝐻

′|𝑄)]

=
tr𝐴∪𝜕𝐴[𝑒

−𝑖𝛽𝑖𝐻′
𝜌𝛽𝑟(𝐻

′|𝑃1)]

tr𝐴∪𝜕𝐴[𝑒
−𝑖𝛽𝑖𝐻′𝜌𝛽𝑟(𝐻

′|𝑃2)]

tr𝐴∪𝜕𝐴[𝑒
−𝑖𝛽𝑖𝐻′

𝜌𝛽𝑟(𝐻
′|𝑃2)]

tr𝐴∪𝜕𝐴[𝑒
−𝑖𝛽𝑖𝐻′𝜌𝛽𝑟(𝐻

′|𝑃3)]
. . .

tr𝐴∪𝜕𝐴[𝑒
−𝑖𝛽𝑖𝐻′

𝜌𝛽𝑟(𝐻
′|𝑃𝑡−1)]

tr𝐴∪𝜕𝐴[𝑒
−𝑖𝛽𝑖𝐻′𝜌𝛽𝑟(𝐻

′|𝑃𝑡)]
. (5.118)

One can see that to get the desired bound in (5.99), it is enough to show the following bound on
these ratios:

tr𝐴∪𝜕𝐴[𝑒
−𝑖𝛽𝑖𝐻′

𝜌𝛽𝑟(𝐻
′|𝑃𝑖)]

tr𝐴∪𝜕𝐴[𝑒
−𝑖𝛽𝑖𝐻′𝜌𝛽𝑟(𝐻

′|𝑃𝑖+1)]
= 1 + 𝜃(𝛿) (5.119)

for 𝜃(𝛿) satisfying the conditions given in Proposition 154. This is why we define region 𝐵 around
a single site on 𝜕𝐴.

To simplify the notation, we keep using 𝑃,𝑄 instead of 𝑃𝑖, 𝑃𝑖+1 for the rest of the proof bearing
in mind that they differ on one site. In order to show (5.119), we change the left-hand side to a
slightly different expression that makes it easier to see the connection to the decay of correlations.
We have

tr𝐴∪𝜕𝐴[𝑒
−𝑖𝛽𝑖𝐻′

𝜌𝛽𝑟(𝐻
′|𝑃 )]

tr𝐴∪𝜕𝐴[𝑒
−𝑖𝛽𝑖𝐻′𝜌𝛽𝑟(𝐻

′|𝑄)]
= 1 +

tr𝐴∪𝜕𝐴

[︁
𝑒−𝑖𝛽𝑖𝐻

′
(𝜌𝛽𝑟(𝐻

′|𝑃 )− 𝜌𝛽𝑟(𝐻
′|𝑄))

]︁
tr𝐴∪𝜕𝐴 [𝑒−𝑖𝛽𝑖𝐻′𝜌𝛽𝑟(𝐻

′|𝑄)]
. (5.120)

To derive (5.99), we can alternatively show

tr𝐴∪𝜕𝐴

[︁
𝑒−𝑖𝛽𝑖𝐻

′
(𝜌𝛽𝑟(𝐻

′|𝑃 )− 𝜌𝛽𝑟(𝐻
′|𝑄))

]︁
tr𝐴∪𝜕𝐴 [𝑒−𝑖𝛽𝑖𝐻′𝜌𝛽𝑟(𝐻

′|𝑄)]
= 𝜃(𝛿). (5.121)

The steps that we take to prove this equation are very similar to the ones in the proof of Proposi-
tion 154. Recall that 𝐻 ′ consists of the terms in 𝐻 that act on 𝐴 ∪ 𝜕𝐴. Similarly, let 𝐻 ′′ be part
of 𝐻 ′ that acts on 𝐵̄ ∪ 𝜕𝐵̄. We also define 𝑇 to be a projector (which again assigns a value from
[𝑑] to the boundary spins) supported on 𝜕𝐵̄.

We divide both the numerator and the denominator of (5.121) by tr𝐵̄∪𝜕𝐵̄[𝑒
−𝑖𝛽𝑖𝐻′′

𝜌𝛽𝑟(𝐻
′′|𝑇 )].

This does not change the fraction but allows us to use the induction hypothesis. Similar to what
we did in (5.105), we split the numerator into two parts, denoted by 𝑀1 and 𝑀2, such that the
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complex perturbations acting on 𝐵 are all moved to 𝑀2. We get

tr𝐴∪𝜕𝐴

[︁
𝑒−𝑖𝛽𝑖𝐻

′
(𝜌𝛽𝑟(𝐻

′|𝑃 )− 𝜌𝛽𝑟(𝐻
′|𝑄))

]︁
tr𝐵̄∪𝜕𝐵̄ [𝑒−𝑖𝛽𝑖𝐻′′𝜌𝛽𝑟(𝐻

′′|𝑇 )] =𝑀1 +𝑀2, (5.122)

where

𝑀1 =
tr𝐴∪𝜕𝐴

[︁
𝑒−𝑖𝛽𝑖𝐻

′′
(𝜌𝛽𝑟(𝐻

′|𝑃 )− 𝜌𝛽𝑟(𝐻
′|𝑄))

]︁
tr𝐵̄∪𝜕𝐵̄ [𝑒−𝑖𝛽𝑖𝐻′′𝜌𝛽𝑟(𝐻

′′|𝑇 )]

𝑀2 =
tr𝐴∪𝜕𝐴

[︁
𝑒−𝑖𝛽𝑖𝐻

′′
(𝑒−𝑖𝛽𝑖(𝐻

′−𝐻′′) − 1) (𝜌𝛽𝑟(𝐻
′|𝑃 )− 𝜌𝛽𝑟(𝐻

′|𝑄))
]︁

tr𝐵̄∪𝜕𝐵̄ [𝑒−𝑖𝛽𝑖𝐻′′𝜌𝛽𝑟(𝐻
′′|𝑇 )] . (5.123)

Now we use the crucial fact that 𝜌𝛽𝑟(𝐻 ′|𝑃 or 𝑄) is a classical probability distribution that has the
Markov property. In other words,

Lemma 158. For any diagonal operator 𝑂 supported on 𝐵̄ ∪ 𝜕𝐵̄, we have

tr𝐴∪𝜕𝐴[𝑂 𝜌𝛽𝑟(𝐻
′|𝑃 )] =

∑︁
𝑠∈[𝑑]|𝜕𝐵̄|

tr𝐵̄∪𝜕𝐵̄
[︀
𝑂 𝜌𝛽𝑟(𝐻

′′|𝑃𝑠)
]︀
tr𝐴∪𝜕𝐴[𝑃𝑠 𝜌𝛽𝑟(𝐻

′|𝑃 )], (5.124)

where 𝑠 denotes the state of the spins on 𝜕𝐵̄ and 𝑃𝑠 is the corresponding projector.

This equality follows from the law of total probability. The term tr𝐴∪𝜕𝐴[𝑃𝑠 𝜌𝛽𝑟(𝐻
′|𝑃 )] is the

probability of the boundary spins being in state 𝑠 while tr𝐵̄∪𝜕𝐵̄ [𝑂 𝜌𝛽𝑟(𝐻
′′|𝑃𝑠)] is the expectation

value of 𝑂 conditioned on the state of the boundary spins. The fact that we only need to condition
on the value of the boundary spins follows from the Markov property of the Gibbs distribution. We
postpone a more detailed proof of Eq. (5.124) until after the end of this proof.

Using (5.124), the term 𝑀1 can be written as

𝑀1 =
∑︁

𝑠∈[𝑑]|𝜕𝐵̄|

⎛⎝tr𝐵̄∪𝜕𝐵̄

[︁
𝑒−𝑖𝛽𝑖𝐻

′′
𝜌𝛽𝑟(𝐻

′′|𝑃𝑠)
]︁

tr𝐵̄∪𝜕𝐵̄ [𝑒−𝑖𝛽𝑖𝐻′′𝜌𝛽𝑟(𝐻
′′|𝑇 )] − 1

⎞⎠ tr𝐴∪𝜕𝐴[𝑃𝑠 𝜌𝛽𝑟(𝐻
′|𝑃 )]

−
∑︁

𝑠∈[𝑑]|𝜕𝐵̄|

⎛⎝tr𝐵̄∪𝜕𝐵̄

[︁
𝑒−𝑖𝛽𝑖𝐻

′′
𝜌𝛽𝑟(𝐻

′′|𝑃𝑠)
]︁

tr𝐵̄∪𝜕𝐵̄ [𝑒−𝑖𝛽𝑖𝐻′′𝜌𝛽𝑟(𝐻
′′|𝑇 )] − 1

⎞⎠ tr𝐴∪𝜕𝐴[𝑃𝑠 𝜌𝛽𝑟(𝐻
′|𝑄)]

=
∑︁

𝑠∈[𝑑]|𝜕𝐵̄|

⎛⎝tr𝐵̄∪𝜕𝐵̄

[︁
𝑒−𝑖𝛽𝑖𝐻

′′
𝜌𝛽𝑟(𝐻

′′|𝑃𝑠)
]︁

tr𝐵̄∪𝜕𝐵̄ [𝑒−𝑖𝛽𝑖𝐻′′𝜌𝛽𝑟(𝐻
′′|𝑇 )] − 1

⎞⎠(︀tr𝐴∪𝜕𝐴[𝑃𝑠 𝜌𝛽𝑟(𝐻 ′|𝑃 )]− tr𝐴∪𝜕𝐴[𝑃𝑠 𝜌𝛽𝑟(𝐻
′|𝑄)]

)︀
.

(5.125)

For later convenience, we added and subtracted 1 in the first equality. We can now use the induction
hypothesis and the exponential decay of correlations property to bound 𝑀1. From the induction
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assumption (5.99) we see that for sufficiently small 𝛿

tr𝐵̄∪𝜕𝐵̄

[︁
𝑒−𝑖𝛽𝑖𝐻

′′
𝜌𝛽𝑟(𝐻

′′|𝑃𝑠)
]︁

tr𝐵̄∪𝜕𝐵̄ [𝑒−𝑖𝛽𝑖𝐻′′𝜌𝛽𝑟(𝐻
′′|𝑇 )] = 1 + |𝜕𝐵̄|𝜃(𝛿). (5.126)

Moreover, we let 𝑥 ∈ 𝐵 be the site on which 𝑃 and 𝑄 differ. Then, the assumption of the exponential
decay of correlations (5.52) implies⃒⃒⃒

trΛ∖𝜕𝐵̄[𝜌𝛽𝑟(𝐻
′|𝑃 )]− trΛ∖𝜕𝐵̄[𝜌𝛽𝑟(𝐻

′|𝑄)]
⃒⃒⃒
≤ 𝑐𝑒−dist(𝑥,𝜕𝐵̄)/𝜉. (5.127)

Overall, (5.126) and (5.127) show that |𝑀1| can be bounded as follows:

|𝑀1| ≤ 𝑐|𝜃(𝛿)||𝜕𝐵̄|𝑒−dist(𝑥,𝜕𝐵̄)/𝜉. (5.128)

Similarly, one can show that

𝑀2 =∑︁
𝑠∈[𝑑]|𝐵|

⎛⎝tr𝐵̄∪𝜕𝐵̄

[︁
𝑒−𝑖𝛽𝑖𝐻

′′
𝜌𝛽𝑟(𝐻

′′|𝑃𝑠)
]︁

tr𝐵̄∪𝜕𝐵̄ [𝑒−𝑖𝛽𝑖𝐻′′𝜌𝛽𝑟(𝐻
′′|𝑇 )]

⎞⎠ tr𝐴∪𝜕𝐴[(𝑒
−𝑖𝛽𝑖(𝐻′−𝐻′′) − 1)𝑃𝑠 (𝜌𝛽𝑟(𝐻

′|𝑃 )− 𝜌𝛽𝑟(𝐻
′|𝑄))],

(5.129)

which again by using (5.99) and
∑︀

𝑠∈[𝑑]|𝐵| tr𝐴∪𝜕𝐴[𝑃𝑠 𝜌𝛽𝑟(𝐻
′|𝑃 )] = 1 can be bounded as

|𝑀2| ≤ 𝑐′′𝛿||𝐻𝐵||(1 + |𝜕𝐵̄||𝜃(𝛿)|). (5.130)

We next analyze the denominator of (5.121) that similar to the numerator is first divided by
tr𝐵̄∪𝜕𝐵̄

[︁
𝑒−𝑖𝛽𝑖𝐻

′′
𝜌𝛽𝑟(𝐻

′′|𝑇 )
]︁
. We can follow similar arguments to Section 5.6.2 to show that for

sufficiently small 𝛿, we can lower bound this term by a constant:

tr𝐴∪𝜕𝐴

[︁
𝑒−𝑖𝛽𝑖𝐻

′
𝜌𝛽𝑟(𝐻

′|𝑄)
]︁

tr𝐵̄∪𝜕𝐵̄ [𝑒−𝑖𝛽𝑖𝐻′′𝜌𝛽𝑟(𝐻
′′|𝑇 )] ≥ Ω(1). (5.131)

Finally, we can insert these bounds in (5.121) to get the following upper bound for some constants
𝑐1 and 𝑐2:⃒⃒⃒⃒
⃒⃒tr𝐴∪𝜕𝐴

[︁
𝑒−𝑖𝛽𝑖𝐻

′
(𝜌𝛽𝑟(𝐻

′|𝑃 )− 𝜌𝛽𝑟(𝐻
′|𝑄))

]︁
tr𝐴∪𝜕𝐴 [𝑒−𝑖𝛽𝑖𝐻′𝜌𝛽𝑟(𝐻

′|𝑄)]

⃒⃒⃒⃒
⃒⃒ ≤ 𝑐1|𝜃(𝛿)||𝜕𝐵̄|𝑒−dist(𝑥,𝜕𝐵̄)/𝜉 + 𝑐2𝛿||𝐻𝐵||(1 + |𝜕𝐵̄||𝜃(𝛿)|).

(5.132)

Since 𝜃(𝛿) can be chosen as
√
𝛿 for instance, for a fixed dist(𝑥, 𝜕𝐵̄), we can always choose 𝛿 small
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enough such that

𝑐2𝛿||𝐻𝐵||(1 + |𝜕𝐵̄||𝜃(𝛿)|)
𝑐1|𝜃(𝛿)||𝜕𝐵̄|𝑒−dist(𝑥,𝜕𝐵̄)/𝜉

≤ 𝑐3 (5.133)

for some constant 𝑐3 ≤ 1. We can also choose dist(𝑥, 𝜕𝐵̄) sufficiently large enough so that

𝑐1|𝜃(𝛿)||𝜕𝐵̄|𝑒−dist(𝑥,𝜕𝐵̄)/𝜉 ≤ |𝜃(𝛿)|. (5.134)

Without the term 𝑒−dist(𝑥,𝜕𝐵̄)/𝜉 that originates from the decay of correlations property, we could
not ensure that the bound |𝜃(𝛿)| is recovered after the induction step. ⊓⊔

Here, we prove Lemma 158 that we mentioned during the proof of Proposition 157. We restate
the lemma for convenience.

Restatement of Lemma 158. Consider the same setup as in Proposition 157 in which we restrict
ourselves to classical Hamiltonians. For any diagonal operator 𝑂 supported on 𝐵̄ ∪ 𝜕𝐵̄, we have

tr𝐴∪𝜕𝐴[𝑂 𝜌𝛽𝑟(𝐻
′|𝑃 )] =

∑︁
𝑠∈[𝑑]|𝜕𝐵̄|

tr𝐵̄∪𝜕𝐵̄
[︀
𝑂 𝜌𝛽𝑟(𝐻

′′|𝑃𝑠)
]︀
tr𝐴∪𝜕𝐴[𝑃𝑠 𝜌𝛽𝑟(𝐻

′|𝑃 )], (5.135)

where 𝑠 denotes the state of the spins on 𝜕𝐵̄ and 𝑃𝑠 is the corresponding projector.

Proof of Lemma 158. We have

tr𝐴∪𝜕𝐴
[︀
𝑂 𝜌𝛽𝑟(𝐻

′|𝑃 )
]︀
= tr𝐴∪𝜕𝐴

[︃
𝑂𝐵̄∪𝜕𝐵̄

𝑒−𝛽𝑟𝐻
′
𝑃

tr𝐴∪𝜕𝐴 [𝑒−𝛽𝑟𝐻′𝑃 ]

]︃

=
∑︁

𝑠∈[𝑑]|𝜕𝐵̄|

tr𝐴∪𝜕𝐴

[︃
𝑂𝐵̄∪𝜕𝐵̄

𝑒−𝛽𝑟𝐻
′′
𝑃𝑠

tr𝐵̄∪𝜕𝐵̄[𝑒
−𝛽𝐻′′𝑃𝑠]

𝑃𝑠𝑒
−𝛽(𝐻′−𝐻′′)𝑃 tr𝐵̄∪𝜕𝐵̄[𝑒

−𝛽𝐻′′
𝑃𝑠]

tr𝐴∪𝜕𝐴 [𝑒−𝛽𝑟𝐻′𝑃 ]

]︃

=
∑︁

𝑠∈[𝑑]|𝜕𝐵̄|

tr𝐵̄∪𝜕𝐵̄

[︃
𝑂𝐵̄∪𝜕𝐵̄

𝑒−𝛽𝑟𝐻
′′
𝑃𝑠

tr𝐵̄∪𝜕𝐵̄[𝑒
−𝛽𝐻′′𝑃𝑠]

]︃
tr𝐴∪𝜕𝐴

[︃
𝑃𝑠

𝑒−𝛽𝐻
′
𝑃

tr𝐴∪𝜕𝐴[𝑒
−𝛽𝐻′𝑃 ]

]︃

=
∑︁

𝑠∈[𝑑]|𝜕𝐵̄|

tr𝐵̄∪𝜕𝐵̄
[︀
𝑂𝐵̄∪𝜕𝐵̄ 𝜌𝛽𝑟(𝐻

′′|𝑃𝑠)
]︀
tr𝐴∪𝜕𝐴[𝑃𝑠 𝜌𝛽𝑟(𝐻

′|𝑃 )], (5.136)

⊓⊔

Remark 159. A first step in generalizing the proof of Theorem 153 to the quantum case would be
to consider commuting Hamiltonians. While some parts of the proof already apply to these systems,
the one in Proposition 157 does not immediately go through. One issue is that the decomposition
(5.118) does not have a quantum counterpart. In particular, when comparing the effect of two
entangled boundary projectors, we cannot write a telescoping product that reduces this to comparing
local projectors. Perhaps by using the commutativity of the terms in the Hamiltonian, we can find
a structure in the projectors that allows us to overcome this problem. We leave this for future work.
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5.7 Extrapolating from high external fields and Lee-Yang zeros

In this section, we study spin systems whose interactions are described by two- or one-body terms.
For qubits, such systems are generally described by Hamiltonians of the form

𝐻(𝜇) = −
∑︁

(𝑖,𝑗)∈𝐸
𝑎,𝑏∈{𝑥,𝑦,𝑧}

𝐽𝑎𝑏𝑖𝑗 𝜎𝑎 ⊗ 𝜎𝑏 −
∑︁
𝑖∈𝑉

(ℎ𝑥𝑖𝑋𝑖 + ℎ𝑦𝑖 𝑌𝑖 + 𝜇ℎ𝑧𝑖𝑍𝑖), (5.137)

where 𝐽𝑎𝑏𝑖𝑗 , ℎ
𝑎
𝑖 , 𝜇 ∈ R and 𝜎𝑎 ∈ {𝑋,𝑌, 𝑍,1} are Pauli matrices. The interaction graph, as usual, is

denoted by 𝐺 = (𝑉,𝐸) with |𝑉 | = 𝑛 and |𝐸| = 𝑚. Physically, the two-body interactions 𝐽𝑎𝑏𝑖𝑗 are
due to the coupling between the spins of the particles on adjacent sites, whereas the one-body terms
ℎ𝑎𝑖 characterize the interaction of spins with some external magnetic field.

Remark 160. For later convenience, we introduce an extra factor 𝜇 before the 𝑍𝑖 terms in (5.137).
One can think of 𝜇 as the maximum strength of the external field in the 𝑧-direction. As explained
below, this parameter plays the same role as 𝛽 in the extrapolation algorithm of Section 5.3.

In Section 5.3, we developed approximation algorithms for the partition function of a quantum
many-body systems by extrapolating from high to low temperatures. In this section, we again use
the idea of extrapolation, but this time our parameter of interest is 𝜇, the magnitude of the one-
body terms in the 𝑧-direction. The physical motivation for this approach is that when the system
is subject to a large enough external field in a specific direction (the 𝑧-direction in our case), all
the spins align themselves in that direction, and estimating the properties of the system becomes
trivial. However, as we move to smaller fields, the other interaction terms between the particles
gain significance, making the problem non-trivial.

In order to apply the extrapolation algorithm in Section 5.3, we need to know the locus of
the complex zeros of the partition function as a function of the external field 𝜇. As mentioned in
Section 5.1, these are called Lee-Yang zeros. We can exactly determine the locus of these zeros when
the Hamiltonian (5.137) describes a ferromagnetic system, i.e. when the neighboring spins tend to
align along the same direction. This is a result of Suzuki and Fisher [SF71]. There, by generalizing
the result of Lee and Yang [LY52], they show that all the complex zeros lie on the imaginary axis
in the 𝜇-plane. Theorem 163 covers this result.

The key step is to map the quantum system to a classical spin system using the quantum-to-
classical mapping (see for example [SF71, Bra15] ). Then, by the result of Theorem 133, instead of
studying the zeros of the quantum system, we can focus on the zeros of a classical system.

The classical spin system that we obtain involves 1-, 2-, and 4-body terms in its Hamiltonian.
We represent the terms in the Hamiltonian with functions 𝑉1,𝑖, 𝑉2,𝑖, and 𝑉4,𝑖,𝑗 that assign possibly
complex numbers to their input spins. The indices of these functions refer to the number of particles
that they act on and the coefficients of the original quantum Hamiltonian that they depend on.

Proposition 161 (Quantum-to-classical mapping, cf. [SF71]). Consider a 2-local Hamiltonian 𝐻 as
in Eq. (5.137). Let 𝑧𝑖 = 𝑒𝛽𝜇ℎ

𝑧
𝑖 /𝜂 and 𝜀 = 𝛽/𝜂. This Hamiltonian can be mapped to a 4-local classical

spin model involving 𝑛′ = 𝑛𝜂 spins 𝑠 ∈ {±1} with the interactions of the form 𝑉1,𝑖 : {±1} → C,
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𝑉2,𝑖 : {±1}2 → C, and 𝑉4,𝑖,𝑗 : {±1}4 → C such that exp(𝑉1,𝑖(𝑠𝑎)) = 𝑧𝑠𝑎𝑖 and∑︁
𝑠𝑎,𝑠𝑏∈{±1}

exp (𝑉2,𝑖(𝑠𝑎, 𝑠𝑏)) |𝑠𝑎⟩⟨𝑠𝑏| =
(︁

1 𝜀(ℎ𝑥𝑖 +𝑖ℎ
𝑦
𝑖 )

𝜀(ℎ𝑥𝑖 −𝑖ℎ
𝑦
𝑖 ) 1

)︁
,

∑︁
𝑠𝑎,𝑠𝑏,𝑠𝑎′ ,𝑠𝑏′∈{±1}

exp (𝑉4,𝑖,𝑗(𝑠𝑎, 𝑠𝑏, 𝑠𝑎′ , 𝑠𝑏′)) |𝑠𝑎, 𝑠𝑎′⟩⟨𝑠𝑏, 𝑠𝑏′ | =⎛⎜⎝ 1+𝜀𝐽𝑧𝑧
𝑖𝑗 𝜀(−𝑖𝐽𝑧𝑦

𝑖𝑗 +𝐽𝑧𝑥
𝑖𝑗 ) 𝜀(−𝑖𝐽𝑦𝑧

𝑖𝑗 +𝐽𝑥𝑧
𝑖𝑗 ) 𝜀(𝐽𝑥𝑥

𝑖𝑗 −𝐽𝑦𝑦
𝑖𝑗 −𝑖𝐽𝑥𝑦

𝑖𝑗 −𝑖𝐽𝑦𝑥
𝑖𝑗 )

𝜀(𝑖𝐽𝑧𝑦
𝑖𝑗 +𝐽𝑧𝑥

𝑖𝑗 ) 1−𝜀𝐽𝑧𝑧
𝑖𝑗 𝜀(𝐽𝑥𝑥

𝑖𝑗 +𝐽𝑦𝑦
𝑖𝑗 +𝑖𝐽𝑥𝑦

𝑖𝑗 −𝑖𝐽𝑦𝑥
𝑖𝑗 ) 𝜀(𝑖𝐽𝑦𝑧

𝑖𝑗 −𝐽𝑥𝑧
𝑖𝑗 )

𝜀(𝑖𝐽𝑦𝑧
𝑖𝑗 +𝐽𝑥𝑧

𝑖𝑗 ) 𝜀(𝐽𝑥𝑥
𝑖𝑗 +𝐽𝑦𝑦

𝑖𝑗 −𝑖𝐽𝑥𝑦
𝑖𝑗 +𝑖𝐽𝑦𝑥

𝑖𝑗 ) 1−𝜀𝐽𝑧𝑧
𝑖𝑗 𝜀(𝑖𝐽𝑧𝑦

𝑖𝑗 −𝐽𝑧𝑥
𝑖𝑗 )

𝜀(𝐽𝑥𝑥
𝑖𝑗 −𝐽𝑦𝑦

𝑖𝑗 +𝑖𝐽𝑥𝑦
𝑖𝑗 +𝑖𝐽𝑦𝑥

𝑖𝑗 ) 𝜀(−𝑖𝐽𝑦𝑧
𝑖𝑗 −𝐽𝑥𝑧

𝑖𝑗 ) 𝜀(−𝑖𝐽𝑧𝑦
𝑖𝑗 −𝐽𝑧𝑥

𝑖𝑗 ) 1+𝜀𝐽𝑧𝑧
𝑖𝑗

⎞⎟⎠ . (5.138)

The partition function of this classical system is of the form

𝑍𝑐ℓ(𝜇) =
∑︁

𝑠1,...,𝑠𝜂∈{±1}

exp

⎛⎜⎜⎜⎝ ∑︁
𝑖∈𝑉
𝑎∈𝐸1,𝑖

𝑉1,𝑖(𝑠𝑎) +
∑︁
𝑖∈𝑉

(𝑎,𝑏)∈𝐸2,𝑖

𝑉2,𝑖(𝑠𝑎, 𝑠𝑏) +
∑︁

(𝑖,𝑗)∈𝐸
(𝑎,𝑏,𝑎′,𝑏′)∈𝐸4,𝑖,𝑗

𝑉4,𝑖,𝑗(𝑠𝑎, 𝑠𝑏, 𝑠𝑎′ , 𝑠𝑏′)

⎞⎟⎟⎟⎠ ,

(5.139)

where 𝐸1,𝑖, 𝐸2,𝑖, and 𝐸4,𝑖,𝑗 are certain unordered subsets of vertices that depend on the choice of
𝑖, 𝑗 (see the remark below), and we included the effective temperature of the classical system in the
coefficients 𝑉1,𝑖, 𝑉2,𝑖, and 𝑉4,𝑖,𝑗. Moreover, in the limit 𝜂 → ∞, the partition function of the classical
model uniformly converges to that of the quantum system.

Remark 162. The details of the interaction (hyper)graph of the classical system in Proposition 161
is not important for our purposes. We can think of this graph as 𝜂 copies of the original interaction
graph 𝐺 = (𝑉,𝐸) stacked on top of each other. These copies are coupled together by the application
of 𝑉1,𝑖, 𝑉2,𝑖, and 𝑉4,𝑖,𝑗. While the interaction terms like 𝑉1,𝑖 apply to all vertices, the terms 𝑉2,𝑖 act
on a vertex in one of the copies of 𝐺 and its clones in the neighboring graphs. The set 𝐸2,𝑖 denotes
the set of all such two vertices that 𝑉2,𝑖 acts on. Similarly, the set 𝐸4,𝑖,𝑗 corresponds to all four
vertices that interact through 𝑉4,𝑖,𝑗.

In Proposition 161, the dependency on 𝜇 only appears in the 1-body terms 𝑉1,𝑖 and parameters
𝑧𝑖. Also, since we do not rely on sampling algorithms, we do not restrict ourselves to stoquastic
Hamiltonians as in [BDOT08] or [BG17], but we later put constraints on the coefficients 𝐽𝑎𝑏𝑖𝑗 to
make the Hamiltonian ferromagnetic.

5.7.1 Complex zeros of ferromagnetic systems

We now state a generalized Lee-Yang theorem that characterizes the locus of the complex zeros of
certain classical spin systems.

Theorem 163 (Generalized Lee-Yang theorem, cf. [SF71]). Consider the classical spin system
described in Proposition 161 or more generally one that satisfies the following conditions:
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(i)

𝑉2,𝑖(−𝑠𝑎,−𝑠𝑏) = 𝑉 *
2,𝑖(𝑠𝑎, 𝑠𝑏)

𝑉4,𝑖,𝑗(−𝑠𝑎,−𝑠𝑏,−𝑠𝑎′ ,−𝑠𝑏′) = 𝑉 *
4,𝑖,𝑗(𝑠𝑎, 𝑠𝑏, 𝑠𝑎′ , 𝑠𝑏′) (5.140)

(ii)

| exp (𝑉2,𝑖(+1,+1)) | ≥ 1

4

∑︁
𝑠𝑎,𝑠𝑏∈{±1}

| exp (𝑉2,𝑖(𝑠𝑖, 𝑠𝑗)) |

| exp (𝑉4,𝑖,𝑗(+1,+1,+1,+1)) | ≥ 1

4

∑︁
𝑠𝑎,𝑠𝑏,𝑠𝑎′ ,𝑠𝑏′∈{±1}

| exp (𝑉4,𝑖,𝑗(𝑠𝑎, 𝑠𝑏, 𝑠𝑎′ , 𝑠𝑏′)) |. (5.141)

Let 𝑍𝑐ℓ(𝜇) be the partition function of this system as a function of 𝜇 for a fixed 𝛽. Then, the zeros of
this partition function, i.e. the solutions of 𝑍𝑐ℓ(𝜇) = 0, are all on the imaginary axis in the complex
𝜇-plane, that is, Re(𝜇) = 0.

Proof of Theorem 163. Refer to [SF71] for the detailed proof of this proposition. Here we only
sketch one of the main ideas in their proof.

For simplicity and in order to roughly see why conditions (i) and (ii) are sufficient for the zeros
of the partition function to lie on the imaginary axis, we neglect the 𝑉4,𝑖,𝑗 terms and focus on the
𝑉1,𝑖 and 𝑉2,𝑖 interactions. Recall that 𝑧𝑖 = 𝑒𝛽𝜇ℎ

𝑧
𝑖 /𝜂 and exp(𝑉1,𝑖(𝑠𝑎)) = 𝑧𝑠𝑎𝑖 . Then, 𝑍𝑖𝑗(𝑧𝑖, 𝑧𝑗) =∑︀

𝑠𝑎,𝑠𝑏∈{±1} 𝑧
𝑠𝑎
𝑖 𝑧

𝑠𝑏
𝑗 exp(𝑉2,𝑖(𝑠𝑖, 𝑠𝑗)) is proportional to the partition function of the system when all

spins except 𝑠𝑎 and 𝑠𝑏 are fixed to some certain values {𝑠𝑘}𝑘 ̸=𝑎,𝑏.
Consider the solutions of 𝑍𝑖𝑗(𝑧𝑖, 𝑧𝑗) = 0. It is shown in [SF71] that if such a solution satisfies

|𝑧𝑗 | > 1 and |𝑧𝑖| > 1, then we can find another solution such that |𝑧𝑗 | = 1 and |𝑧𝑖| > 1 (a similar
result holds for |𝑧𝑖|, |𝑧𝑗 | < 1).

Here, we show that when |𝑧𝑗 | = 1, we also necessarily have |𝑧𝑖| = 1. Since 𝑧𝑖 and 𝑧𝑗 depend on 𝜇
through 𝑧𝑖 = 𝑒𝛽𝜇ℎ

𝑧
𝑖 /𝜂, we see that the partition function can only vanish when Re(𝜇) = 0. Although

we do not show it here, it turns out that this condition is actually sufficient to show that the whole
partition function, without any fixed spins, also has complex zeros only on the imaginary axis.

We have

𝑍𝑖𝑗(𝑧𝑖, 𝑧𝑗) =

⎛⎝ ∑︁
𝑠𝑏∈{±1}

𝑧𝑠𝑏𝑗 exp (𝑉2,𝑖(+1, 𝑠𝑏))

⎞⎠ 𝑧𝑖 +

⎛⎝ ∑︁
𝑠𝑏∈{±1}

𝑧𝑠𝑏𝑗 exp (𝑉2,𝑖(−1, 𝑠𝑏))

⎞⎠ 𝑧−1
𝑖 . (5.142)

Using the condition (i) in (ii) we see that

|exp(𝑉2,𝑖(+1,+1))| ≥ |exp(𝑉2,𝑖(+1,−1))| . (5.143)

If we consider |𝑧𝑗 | = 1, this implies
∑︀

𝑠𝑏∈{±1} 𝑧
𝑠𝑏
𝑗 exp(𝑉2,𝑖(+1, 𝑠𝑏)) ̸= 0. We use this in Eq. (5.142)

to find the solutions of 𝑍𝑖𝑗(𝑧𝑖, 𝑧𝑗) = 0 for some |𝑧𝑗 | = 1. We get

|𝑧𝑖|2 =
|∑︀𝑠𝑏∈{±1} 𝑧

𝑠𝑏
𝑗 exp (𝑉2,𝑖(−1, 𝑠𝑏)) |

|∑︀𝑠𝑏∈{±1} 𝑧
𝑠𝑏
𝑗 exp (𝑉2,𝑖(+1, 𝑠𝑏)) |

, (5.144)
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but another application of condition (i) implies |𝑧𝑖| = 1 as desired. The rest of the proof for the
whole partition function involves a recursive use of this conclusion and shows that the location of
the zeros remains on the imaginary axis when different interactions are summed over in the partition
function. ⊓⊔

Remark 164. Instead of 𝜇, it is common to consider the partition function as a function of 𝑒𝜇.
In this case, the complex zeros are located on the unit circle in the 𝑒𝜇-plane. Hence, the Lee-Yang
theorem is often called the circle theorem.

The connection between Theorem 163 and quantum ferromagnetic systems is established through
the following theorem.

Theorem 165 (Zeros of ferromagnetic systems, cf. [SF71]). Let 𝐻(𝜇) be a 2-local Hamiltonian as
in Eq. (5.137) with 𝐽𝑥𝑧𝑖𝑗 , 𝐽

𝑧𝑥
𝑖𝑗 , 𝐽

𝑦𝑧
𝑖𝑗 , 𝐽

𝑧𝑦
𝑖𝑗 = 0 defined over an arbitrary interaction graph that is not

necessarily geometrically local. Suppose ℎ𝑧𝑖 ≥ 0, and additionally, the following constraint is satisfied
by the coefficients:

𝐽𝑧𝑧𝑖𝑗 ≥ 1

2

[︂(︁
𝐽𝑥𝑥𝑖𝑗 − 𝐽𝑦𝑦𝑖𝑗

)︁2
+
(︁
𝐽𝑥𝑦𝑖𝑗 + 𝐽𝑦𝑥𝑖𝑗

)︁2]︂ 1
2

+
1

2

[︂(︁
𝐽𝑥𝑥𝑖𝑗 + 𝐽𝑦𝑦𝑖𝑗

)︁2
+
(︁
𝐽𝑥𝑦𝑖𝑗 − 𝐽𝑦𝑥𝑖𝑗

)︁2]︂ 1
2

. (5.145)

Then, the partition function of this system only vanishes when Re(𝜇) = 0.
When 𝐽𝑥𝑦𝑖𝑗 = 𝐽𝑦𝑥𝑖𝑗 = 0, this condition simplifies to

𝐽𝑧𝑧𝑖𝑗 ≥ |𝐽𝑦𝑦𝑖𝑗 |, 𝐽𝑧𝑧𝑖𝑗 ≥ |𝐽𝑥𝑥𝑖𝑗 |. (5.146)

This characterizes the ferromagnetic Heisenberg model given by

𝐻 = −
∑︁

(𝑖,𝑗)∈𝐸

(︁
𝐽𝑥𝑥𝑖𝑗 𝑋𝑖𝑋𝑗 + 𝐽𝑦𝑦𝑖𝑗 𝑌𝑖𝑌𝑗 + 𝐽𝑧𝑧𝑖𝑗 𝑍𝑖𝑍𝑗

)︁
−
∑︁
𝑖∈𝑉

(ℎ𝑥𝑖𝑋𝑖 + ℎ𝑦𝑖 𝑌𝑖 + 𝜇ℎ𝑧𝑖𝑍𝑖) . (5.147)

Proof of Theorem 165. The proof follows by applying Proposition 161 to map the quantum
system (5.137) to the classical system in (5.138). One can see that if the quantum system satisfies
(5.145), then the corresponding classical system satisfies the conditions (5.140) and (5.141). Hence,
the generalized Lee-Yang theorem in Theorem 163 shows that the zeros of the classical system are
located on the imaginary axis. As the error 𝜀 in the mapping goes to zero, we get a family of
classical partition functions that approach the quantum partition function. Theorem 133 implies
that the complex zeros of the quantum and classical systems coincide in the limit of 𝜀 → 0. Thus,
the complex zeros of the quantum system are also located on the imaginary axis. ⊓⊔

Remark 166. One can extend the result of Theorem 163 to include interactions between spins
greater than spin 1/2. It is shown in [Suz69] that the partition function of the Heisenberg model
with spin 𝑠 particles can be mapped to that of a spin 1/2 Heisenberg model as in (5.147). Therefore,
the Lee-Yang theorem holds for these systems too.

5.7.2 An algorithm for the anisotropic XXZ model

In Section 5.7.1, we studied the location of the complex zeros of a 2-local Hamiltonian when the
external magnetic field 𝜇 is varied. Here, we focus on a specific subclass of those Hamiltonians
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for which we can find an approximation algorithm. Particularly, we consider the anisotropic XXZ
model which has the following Hamiltonian:

𝐻(𝜇) = −
∑︁

(𝑖,𝑗)∈𝐸

(︀
𝐽𝑖𝑗(𝑋𝑖𝑋𝑗 + 𝑌𝑖𝑌𝑗) + 𝐽𝑧𝑧𝑖𝑗 𝑍𝑖𝑍𝑗

)︀
− 𝜇

2

∑︁
𝑖∈𝑉

(𝑍𝑖 + 1). (5.148)

Compared to the Heisenberg model, the XXZ model assigns equal coefficients to the 𝑋𝑖𝑋𝑗 and 𝑌𝑖𝑌𝑗
terms and does not include 𝑋𝑖 and 𝑌𝑖 terms. An important property of this model that we use in
our algorithm is that [︃

𝐻(𝜇),
𝜇

2

∑︁
𝑖∈𝑉

(𝑍𝑖 + 1)

]︃
= 0. (5.149)

To see this, notice that [𝑋𝑖𝑋𝑗 + 𝑌𝑖𝑌𝑗 , 𝑍𝑖 + 𝑍𝑗 ] = 0.

Let |𝑠1, 𝑠2, . . . , 𝑠𝑛⟩ be an assignment of spins ±1 to all the vertices. Any such vector is an
eigenstate of 1/2

∑︀𝑛
𝑖=1(𝑍𝑖 + 1), that is,

1

2

𝑛∑︁
𝑖=1

(𝑍𝑖 + 1)|𝑠1, 𝑠2, . . . , 𝑠𝑛⟩ =
1

2
(
𝑛∑︁
𝑖=1

𝑠𝑖 + 𝑛)|𝑠1, 𝑠2, . . . , 𝑠𝑛⟩. (5.150)

Let ℋ𝑘 denote the eigenspace of 1/2
∑︀𝑛

𝑖=1(𝑍𝑖 + 1) that corresponds to the 𝑘th eigenvalue. This
subspace is spanned by the binary strings of length 𝑛 with Hamming weight 𝑘. We have:

∀|𝑣⟩ ∈ ℋ𝑘,
1

2

𝑛∑︁
𝑖=1

(𝑍𝑖 + 1)|𝑣⟩ = 𝑘|𝑣⟩. (5.151)

We can partition the Hilbert space of the 𝑛 vertices ℋ into ℋ = ⊕𝑘ℋ𝑘. The dimension of each of
these subspaces dim(ℋ𝑘) is

(︀
𝑛
𝑘

)︀
. Since (5.149) holds, the partition function of this model can be

written as a polynomial in 𝑧 = exp(𝛽𝜇).

Lemma 167. The partition function of the anisotropic XXZ model with 𝜇 < 0 given in (5.148) can
be written as

𝑍𝛽(𝐻(𝜇)) =

𝑛∑︁
𝑘=0

𝑞𝑘𝑧
𝑘, (5.152)

where 𝑧 = 𝑒𝛽𝜇 and the coefficients 𝑞𝑘 are defined by

𝑞𝑘 = trℋ𝑘
[𝑒𝛽

∑︀
(𝑖,𝑗)∈𝐸(𝐽𝑖𝑗(𝑋𝑖𝑋𝑗+𝑌𝑖𝑌𝑗)+𝐽

𝑧𝑧
𝑖𝑗 𝑍𝑖𝑍𝑗)]. (5.153)
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Proof of Lemma 167. We have

𝑍𝛽(𝐻(𝜇)) = trℋ[𝑒
−𝛽𝐻(𝜇)]

= trℋ[𝑒
𝛽
∑︀

(𝑖,𝑗)∈𝐸(𝐽𝑖𝑗(𝑋𝑖𝑋𝑗+𝑌𝑖𝑌𝑗)+𝐽
𝑧𝑧
𝑖𝑗 𝑍𝑖𝑍𝑗)𝑒𝛽𝜇/2

∑︀
𝑖∈𝑉 (𝑍𝑖+1).]

=
𝑛∑︁
𝑘=0

𝑒𝛽𝜇𝑘 trℋ𝑘
[𝑒𝛽

∑︀
(𝑖,𝑗)∈𝐸(𝐽𝑖𝑗(𝑋𝑖𝑋𝑗+𝑌𝑖𝑌𝑗)+𝐽

𝑧𝑧
𝑖𝑗 𝑍𝑖𝑍𝑗)]

=
𝑛∑︁
𝑘=0

𝑞𝑘𝑧
𝑘.

⊓⊔

Remark 168. In Lemma 167 and what follows we assume for simplicity that 𝜇 < 0 and Taylor
expand in 𝑧. If 𝜇 > 0 we can pull out a factor of 𝑧𝑛 and expand in 1/𝑧 instead.

Now, we are ready to state an algorithm for this model.

Theorem 169 (Approximation algorithm for the partition function of the XXZ model). There
is an algorithm that runs in 𝑛𝑂(log(𝑛/𝜀)) time and outputs an 𝜀-multiplicative approximation to the
partition function of the anisotropic XXZ model in the ferromagnetic regime, i.e. when 𝐽𝑧𝑧𝑖𝑗 ≥ |𝐽𝑖𝑗 |
and 𝜇 is an arbitrary nonzero constant.

Proof of Theorem 169. By Lemma 167, the partition function is a polynomial of degree 𝑛 given
in (5.152). The location of its zeros is given by Theorem 165. Hence, we can apply the truncated
Taylor series of Proposition 135 to obtain an approximation algorithm for 𝑍𝛽(𝐻(𝜇)).

According to Lemma 167, the partition function of this system is

𝑍𝛽(𝐻(𝜇)) =

𝑛∑︁
𝑘=0

𝑞𝑘𝑧
𝑘.

The running time of the extrapolation algorithm is dominated by the calculation of the coefficients
𝑞𝑘 of the Taylor expansion, where 𝑞𝑘 is

𝑞𝑘 = trℋ𝑘
[𝑒𝛽

∑︀
(𝑖,𝑗)∈𝐸(𝐽𝑖𝑗(𝑋𝑖𝑋𝑗+𝑌𝑖𝑌𝑗)+𝐽

𝑧𝑧
𝑖𝑗 𝑍𝑖𝑍𝑗)] (5.154)

and dim(ℋ𝑘) =
(︀
𝑛
𝑘

)︀
. In general, we can decompose the Hilbert space of the system as ℋ = ⊕𝑘ℋ𝑘.

The local Hamiltonian 𝐻 is block diagonal in this basis. Since 𝐻 is sum of local terms, it takes time
𝑛𝑂(𝑘) to compute the entries of 𝐻 and diagonalize it in the block corresponding to the subspace ℋ𝑘.
Then we can find the trace of the exponential of this block also in time 𝑛𝑂(𝑘). Since we only need
𝑘 = 𝑂(log(𝑛)) in the truncated Taylor expansion, we achieve an overall running time of 𝑛𝑂(log(𝑛/𝜀)).

⊓⊔

Even though Theorem 165 applies to a broader class of 2-local Hamiltonians such as the Heisen-
berg model, our method does not immediately give an algorithm for those Hamiltonians. The reason
is a technical difficulty in representing the partition function of these models as a polynomial in
exp(𝛽𝜇) (or exp(−𝛽𝜇)) . This turns out not to be an issue for the XXZ model since the 1-body
terms

∑︀
𝑖 𝑍𝑖 commute with the rest of the Hamiltonian.
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One might wonder why we could not use the extrapolation algorithm directly for the classical
system that we get after the mapping in Proposition 161. After all, the partition function of this
system is also a polynomial of degree poly(𝑛) and the location of its zeros is the same as that of the
quantum system. It seems that at least naively applying this idea does not work. This is because
the point that we want to extrapolate to in the classical system is 𝜇/𝜂 instead of 𝜇. For the error of
the mapping to be 1/poly(𝑛), we need 𝜂 to be poly(𝑛). Thus, the ending point of the extrapolation
is vanishingly close to the imaginary axis where the zeros are located. This makes the running time
blow up and become exponential instead of quasi-polynomial.

Note that sampling algorithms like the ones used in [Bra15, BG17] do not encounter this prob-
lem. The running time of these algorithms remains efficient even if the parameters of the classical
Hamiltonian scale with the number of particles 𝑛. There are unfortunately no randomized algo-
rithms based on sampling known for the 4-local classical Hamiltonian obtained in the mapping
of Proposition 161. We leave extending our result to cover all the Hamiltonians considered in
Theorem 165 as a challenge for future work.
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Chapter 6

Improved approximation algorithms for
bounded-degree local Hamiltonians

Chapter summary: The low-temperature properties of interacting quantum systems are believed
to require exponential resources to compute in the general case. Quantifying the extent to which
such properties can be approximated using efficient algorithms remains a significant open challenge.
In this chapter, we consider the task of approximating the ground state energy of two-local quantum
Hamiltonians with bounded-degree interaction graphs. Most existing algorithms optimize the energy
over the set of product states. We propose and analyze a family of shallow quantum circuits that
can be used to improve the approximation ratio achieved by a given product state. The algorithm
takes as input an 𝑛-qubit product state |𝑣⟩ with variance Var𝑣(𝐻) and improves its energy by an
amount proportional to Var𝑣(𝐻)2/𝑛. In a typical case, this results in an extensive improvement in
the estimated energy. We extend our results to 𝑘-local Hamiltonians and entangled initial states.
This chapter is based on:

[AGMKS21] Anurag Anshu, David Gosset, Karen J. Morenz Korol, and Mehdi Soleimanifar. Im-
proved approximation algorithms for bounded-degree local Hamiltonians. Phys. Rev. Lett.,
127:250502, Dec 2021

6.1 Introduction

Quantum computers are capable of efficiently computing the dynamics of quantum many-body sys-
tems [Llo96], and it is anticipated that they can be useful for scientific applications in physics,
materials science and quantum chemistry. The extent of the quantum advantage for other impor-
tant simulation tasks, such as computing low temperature properties of quantum systems, is still
unknown. In this chapter we consider the task of approximating the ground state energy of local
Hamiltonians. Here it is natural to expect some improvement over classical machines which cannot
even store the state of such systems efficiently. Indeed, classical methods such as the mean-field
or Hartree-Fock approximations do not capture the entanglement structure present in the true
ground state.

Motivated by small quantum computers that may be available in the near future, there has
been increased interest in devising algorithms that consume few quantum resources and can be
implemented across a wide range of hardware platforms. In this vein, heuristic algorithms for ground
state preparation have been proposed based on variationally minimizing the energy over the output
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states of shallow (low-depth) quantum circuits [PMS+14, FGG14, KMT+17]. Although variational
algorithms have been rigorously analyzed for specific problems and some limitations are known
[MBS+18, FGG20, BKKT20, BGM21], no general treatment of their efficacy exists. Characterizing
the advantage offered by shallow quantum circuits and variational quantum algorithms stands as a
pressing challenge.

In this chapter, we derive rigorous bounds on the performance of shallow quantum circuits in
estimating the ground state energy of local Hamiltonians. For simplicity, we state our results for
a system of qubits with two-local interactions. Later in Section 6.3.5, we discuss extensions of our
results to 𝑘-local Hamiltonians.

To begin, let 𝐺 = (𝑉,𝐸) be a graph, and consider a Hamiltonian

𝐻 =
∑︁

{𝑖,𝑗}∈𝐸

ℎ𝑖𝑗 (6.1)

with 𝑛 = |𝑉 | qubits and nearest-neighbor interactions ℎ𝑖𝑗 that act nontrivially only on qubits {𝑖, 𝑗}
at vertices connected by an edge. We assume without loss of generality that ‖ℎ𝑖𝑗‖ ≤ 1. We are
interested in the problem of approximating the ground energy or smallest eigenvalue 𝜆min(𝐻) of
the Hamiltonian. It will be convenient to instead approximate the largest eigenvalue 𝜆max(𝐻);
this convention matches the one used in classical optimization and is without loss of generality,
since 𝜆min(𝐻) = −𝜆max(−𝐻). In the worst case, the problem of estimating the largest eigenvalue
𝜆max(𝐻) of Eq. (6.1) to within an additive error scaling inverse polynomially with 𝑛 is believed to
be intractable for quantum or classical computers 1. Here we consider the approximation task where
the goal is to compute an estimate 𝑒 for max(𝐻) such that the approximation ratio 𝑟 ≡ 𝑒/𝜆𝑚𝑎𝑥(𝐻)
is as close to 1 as possible. We will also be interested in efficient quantum algorithms that prepare
states |𝜓⟩ with good approximation ratios.

Besides describing local interactions encountered in physics, Hamiltonians of the form Eq. (6.1)
can encode notable cost-functions considered in computer science and thus provide a physically
motivated extension of the classical approximation algorithm setting [Vaz13]. For example, one may
consider an Ising Hamiltonian for which ℎ𝑖𝑗 = (𝐼 − 𝑍𝑖𝑍𝑗)/2, where 𝑍 is the Pauli operator. This
Hamiltonian is classical—that is, diagonal in the computational basis—and computing its maximum
eigenvalue is equivalent to finding the Max-Cut of the graph 𝐺, a well-studied classical optimization
problem. More generally, two-local quantum Hamiltonians may involve noncommuting terms such
as Heisenberg interactions ℎ𝑖𝑗 = 1/4(𝐼−𝑋𝑖𝑋𝑗−𝑌𝑖𝑌𝑗−𝑍𝑖𝑍𝑗) (with Pauli 𝑋,𝑌 and 𝑍 operators); the
resulting optimization problem can be viewed as a quantum analogue of Max-Cut [GP19]. Quantum
approximation algorithms aim to estimate the largest eigenvalue of such Hamiltonians and have
been studied in several previous works. This includes the Heisenberg interactions mentioned above
[GP19, AGM20] and more general settings in which the interaction terms ℎ𝑖𝑗 are restricted to be
positive semidefinite [GK12, HLP20, PT20], or traceless [HM17, BGKT19].

Despite considerable interest, the ultimate limits of efficient algorithms for quantum approxima-
tion algorithms are poorly understood. Approximation ratios approaching 1 are only known to be
achievable for certain special families of graphs, including lattices or bounded-degree planar graphs
using tensor product of 𝑂(1)-qubit states [BBT07] or high degree graphs using tensor products
of single-qubit states [BBT07, GK12, BH16]. In certain cases, one may ascertain limitations on

1In particular, a decision version of this problem is complete for the complexity class QMA which is a quantum
generalization of NP
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efficient achievable approximation ratios from the classical Probabilistically Checkable Proof (PCP)
theorem [ALM+98, AS98, Din07], though stronger and more general limitations may follow from
the quantum PCP conjecture if some version of it can be proven [AAV13].

A quantum approximation algorithm typically outputs an estimate of the form ⟨𝑣|𝐻|𝑣⟩ where |𝑣⟩
is a quantum state computed by the algorithm. A central challenge is to understand the structure of
quantum states |𝑣⟩ that achieve good approximation ratios in the general case. Most existing algo-
rithms are based on tensor products of one- or few-qubit states, while Ref. [AGM20] also considers
states prepared by shallow quantum circuits. In this chapter, we describe conditions under which
the performance of such algorithms can be improved. We restrict our attention to local Hamilto-
nians on bounded-degree graphs and consider an improvement strategy based on shallow quantum
circuits.

6.2 Summary of results

6.2.1 Improvement of product states

To this end, suppose we are given an 𝑛-qubit state |𝑣⟩ and a Hamiltonian Eq. (6.1) defined on a
graph 𝐺 = (𝑉,𝐸) with maximum degree 𝑑 ≥ 2. It will be convenient to assume (without loss of
generality) that 𝐺 is 𝑑-regular—we can ensure this by possibly adding some local terms ℎ𝑖𝑗 which
are equal to zero. We imagine that |𝑣⟩ may be the output of some approximation algorithm such
as the ones described above. Our aim is to efficiently compute a state with energy larger than
⟨𝑣|𝐻|𝑣⟩. Moreover, we would like to increase this energy by an amount proportional to |𝐸| in order
to guarantee that the approximation ratio is improved by some additive constant. We show that
this is possible if the following two conditions hold:

(i) The variance of the energy, defined by

Var𝑣(𝐻) = ⟨𝑣|𝐻2|𝑣⟩ − ⟨𝑣|𝐻|𝑣⟩2,

satisfies Var𝑣(𝐻) = Ω(|𝐸|) 2.

(ii) The state |𝑣⟩ is a product state. That is, |𝑣⟩ = |𝑣1⟩ ⊗ |𝑣2⟩ ⊗ . . . ⊗ |𝑣𝑛⟩ where each |𝑣𝑖⟩ is a
single-qubit state.

Theorem 170. Given a product state |𝑣⟩ and a Hamiltonian 𝐻 as in Eq. (6.1) defined on a 𝑑-regular
graph, we can efficiently compute a depth-(𝑑+ 1) quantum circuit 𝑈 such that the state |𝜓⟩ = 𝑈 |𝑣⟩
satisfies

⟨𝜓|𝐻|𝜓⟩ ≥ ⟨𝑣|𝐻|𝑣⟩+Ω

(︂
Var𝑣(𝐻)2

𝑑2|𝐸|

)︂
. (6.2)

This result applies broadly to quantum optimization problems, but does not provide any im-
provement when specialized to the classical setting. To see this, note that condition (i) is not
satisfied in the purely classical case where |𝑣⟩ is a computational basis state and 𝐻 is diagonal in
the computational basis. Indeed, we have Var𝑣(𝐻) = 0 whenever |𝑣⟩ is an eigenstate of 𝐻. On
the other hand, condition (i) is fairly mild in the quantum setting and we later show it holds for

2i.e. there is a universal constant 𝑐, such that asymptotically Var𝑣(𝐻) ≥ 𝑐 · |𝐸|
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a generic product state |𝑣⟩ whenever the Hamiltonian contains nontrivial interactions on each edge
of the graph. Since 𝐺 is 𝑑-regular, the number of terms in the sum is 𝑂(𝑑|𝐸|). So condition (i) is
satisfied if the sum is proportional to the number of terms appearing in it.

Simple examples demonstrate that neither of the two conditions alone is enough to even guar-
antee the existence of a state with approximation ratio better than |𝑣⟩ for large regular graphs.
Condition (ii) alone is not sufficient because it is possible for a product state to have maximal
energy 𝜆max(𝐻) (i.e., this occurs for all classical Hamiltonians). To see that condition (i) is not
sufficient, one can consider the Max-Cut Hamiltonian on (say) an even cycle graph, and let |𝑣⟩
be an equal superposition of two eigenstates of 𝐻, one with maximal energy |𝐸| and one with
energy |𝐸| − Θ(

√︀
|𝐸|). The resulting state has approximation ratio 1 − 𝑂(|𝐸|−1/2) and variance

Var𝑣(𝐻) = Ω(|𝐸|). Thus condition (i) is satisfied, but the approximation ratio cannot be improved
by an additive constant.

In the special case where |𝑣⟩ achieves the largest energy of any product state, we are able to
strengthen the bound Eq. (6.2). We say that the product state |𝑣⟩ is locally optimal for 𝐻 if for
any single-qubit Pauli 𝑄, we have

𝑑

𝑑𝜑
⟨𝑣|𝑒−𝑖𝜑𝑄𝐻𝑒𝑖𝜑𝑄|𝑣⟩

⃒⃒
𝜑=0

= 0,

or equivalently ⟨𝑣|[𝑄,𝐻]|𝑣⟩ = 0. As we later show in Claim 177 in Section 6.3.2, the bound in
Eq. (6.2) can be improved to ⟨𝑣|𝐻|𝑣⟩+Ω(Var𝑣(𝐻)2

𝑑|𝐸| ) for locally optimal states.

Generally, however, the improvement stated in Eq. (6.2) is optimal in the sense that there exists
a Hamiltonian 𝐻 and a product state |𝑣⟩ with Var𝑣(𝐻) = Θ(|𝐸|) for which

𝜆max(𝐻)− ⟨𝑣|𝐻|𝑣⟩ ≤ 𝑂

(︂
Var𝑣(𝐻)2

𝑑2|𝐸|

)︂
. (6.3)

For example, Eq. (6.3) is satisfied by the Hamiltonian with ℎ𝑖𝑗 = 𝑍𝑖 + 𝑍𝑗 on any 𝑑-regular graph
and the product state |𝑣⟩ = (cos(𝜃)|0⟩+ sin(𝜃)|1⟩)⊗𝑛, for any 𝜃 ∈ (0, 𝜋/2). In this simple case, the
left-hand side can be computed exactly and is equal to Var𝑣(𝐻)2

𝑑2|𝐸| · sin2(𝜃)

sin4(2𝜃)
.

To establish Theorem 170, we consider a variational family of states obtained from |𝑣⟩ = ⊗𝑖∈𝑉 |𝑣𝑖⟩
by applying a quantum circuit composed of nearest neighbor commuting gates on the interaction
graph 𝐺. In particular, let 𝑃1, 𝑃2, . . . , 𝑃𝑛 be any collection of single-qubit operators such that
‖𝑃𝑖‖ ≤ 1 and

⟨𝑣𝑖|𝑃𝑖|𝑣𝑖⟩ = 0 for all 𝑖 ∈ 𝑉.

Following [AGM20], we define the circuit

𝑉 (𝜃) =
∏︁

{𝑖,𝑗}∈𝐸

𝑒𝑖𝜃𝑖𝑗𝑃𝑖𝑃𝑗 = 𝑒𝑖
∑︀

{𝑖,𝑗}∈𝐸 𝜃𝑖𝑗𝑃𝑖𝑃𝑗 . (6.4)

Here, 𝜃 is an array of real parameters {𝜃𝑖𝑗}{𝑖,𝑗}∈𝐸 . Since by assumption, the interaction graph
𝐺 is 𝑑-regular, the quantum circuit 𝑉 (𝜃) can be implemented with circuit depth 𝑑 + 1. It is not
hard to see that this variational family includes as a special case the level-1 Quantum Approximate
Optimization Algorithm (QAOA) for 2-local classical Hamiltonians [FGG14]. For a given choice of
operators {𝑃𝑖}𝑖∈𝑉 , the following theorem lower bounds the improvement in the energy after applying
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the the quantum circuit 𝑉 (𝜃) to |𝑣⟩.

Theorem 171. Let |𝑣⟩ be a product state and |𝜓⟩ = 𝑉 (𝜃)|𝑣⟩ be the state prepared by the quantum
circuit Eq. (6.4). Define the positive real parameter 𝛼 by

𝛼 = E{𝑖,𝑗}∈𝐸 |⟨𝑣𝑖, 𝑣𝑗 |[𝑃𝑖𝑃𝑗 , ℎ𝑖𝑗 ]|𝑣𝑖, 𝑣𝑗⟩|, (6.5)

where the expectation is with respect to the uniform distribution over the edges. There is an efficient
classical algorithm to select parameters 𝜃 satisfying

⟨𝜓|𝐻|𝜓⟩ ≥ ⟨𝑣|𝐻|𝑣⟩+Ω
(︀
|𝐸|𝛼2/𝑑

)︀
. (6.6)

Proof. Write 𝑁𝑖𝑗 for the set of edges {𝑘, ℓ} ∈ 𝐸 incident to a given edge {𝑖, 𝑗} ∈ 𝐸. The latter edge
is included as well, i.e., {𝑖, 𝑗} ∈ 𝑁𝑖𝑗 . Consider the energy of a term

⟨𝜓|ℎ𝑖𝑗 |𝜓⟩ = ⟨𝑣|𝑉 (𝜃)†ℎ𝑖𝑗𝑉 (𝜃)|𝑣⟩.

The gates in 𝑉 (𝜃) which are associated with edges that are not incident with {𝑖, 𝑗} can be cancelled,
leaving ⟨𝑣|𝑉 †

𝑖𝑗ℎ𝑖𝑗𝑉𝑖𝑗 |𝑣⟩ where 𝑉𝑖𝑗 =
∏︀

{𝑘,ℓ}∈𝑁𝑖𝑗
𝑒𝑖𝜃𝑘ℓ𝑃𝑘𝑃ℓ . Thus

⟨𝜓|ℎ𝑖𝑗 |𝜓⟩ = ⟨𝑣|ℎ𝑖𝑗 |𝑣⟩+
∞∑︁
𝑚=1

𝑖𝑚

𝑚!
⟨𝑣|
[︂ ∑︁
{𝑘,ℓ}∈𝑁𝑖𝑗

−𝜃𝑘ℓ𝑃𝑘𝑃ℓ, ℎ𝑖𝑗
]︂
𝑚

|𝑣⟩. (6.7)

Here, [𝐴,𝐵]𝑚 is the 𝑚-nested commutator [𝐴, [𝐴, . . . [𝐴,𝐵]]]. Using the fact that ⟨𝑣𝑘|𝑃𝑘|𝑣𝑘⟩ = 0 for
all 𝑘, the 𝑚 = 1 term simplifies to∑︁

{𝑘,ℓ}∈𝑁𝑖𝑗

−𝑖𝜃𝑘ℓ⟨𝑣| [𝑃𝑘𝑃ℓ, ℎ𝑖𝑗 ] |𝑣⟩ = −𝑖𝜃𝑖𝑗⟨𝑣|[𝑃𝑖𝑃𝑗 , ℎ𝑖𝑗 ]|𝑣⟩. (6.8)

At this stage, we make the choice

𝜃𝑖𝑗 = 𝜃 · sign (−𝑖⟨𝑣|[𝑃𝑖𝑃𝑗 , ℎ𝑖𝑗 ]|𝑣⟩) , (6.9)

where the parameter 𝜃 will be determined later. Substituting in Eq. (6.8) gives∑︁
{𝑘,ℓ}∈𝑁𝑖𝑗

−𝑖𝜃𝑘ℓ⟨𝑣| [𝑃𝑘𝑃ℓ, ℎ𝑖𝑗 ] |𝑣⟩ = 𝜃|⟨𝑣𝑖, 𝑣𝑗 |[𝑃𝑖𝑃𝑗 , ℎ𝑖𝑗 ]|𝑣𝑖, 𝑣𝑗⟩|. (6.10)
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For 𝑚 > 1, we have ⃒⃒⃒⃒
⟨𝑣|
[︂ ∑︁
{𝑘,ℓ}∈𝑁𝑖𝑗

−𝜃𝑘ℓ𝑃𝑘𝑃ℓ, ℎ𝑖𝑗
]︂
𝑚

|𝑣⟩
⃒⃒⃒⃒

≤
∑︁

{𝑘1,ℓ1},{𝑘2,ℓ2},...
{𝑘𝑚,ℓ𝑚}∈𝑁𝑖𝑗

𝜃𝑚 |⟨𝑣| [𝑃𝑘1𝑃ℓ1 , [. . . , [𝑃𝑘𝑚𝑃ℓ𝑚 , ℎ𝑖𝑗 ]]] |𝑣⟩| .

The only nonzero terms are those in which the expression ⟨𝑣𝑠|𝑃𝑠|𝑣𝑠⟩ does not appear. To upper
bound the number of nonzero terms, we count the number of tuples ({𝑘1, ℓ1}, {𝑘2, ℓ2}, . . . {𝑘𝑚, ℓ𝑚})
such that no vertex in 𝑉 ∖ {𝑖, 𝑗} appears exactly once. An upper bound is as follows (a proof is
provided in Section 6.3.1).

Claim 172. Let 𝑚 ≥ 2. The number of ordered tuples of edges ({𝑘1, ℓ1}, {𝑘2, ℓ2), . . . , {𝑘𝑚, ℓ𝑚}) ∈
𝑁×𝑚
𝑖𝑗 in which no vertex in 𝑉 ∖ {𝑖, 𝑗} appears exactly once is at most (2𝑚

√
𝑑)𝑚.

Finally, using Eq. (6.9) and the fact that ‖ℎ𝑖𝑗‖, ‖𝑃𝑖‖ ≤ 1, we can upper bound

𝜃𝑚 |⟨𝑣| [𝑃𝑘1𝑃ℓ1 , [. . . , [𝑃𝑘𝑚𝑃ℓ𝑚 , ℎ𝑖𝑗 ]]] |𝑣⟩| ≤ (2𝜃)𝑚.

Thus, the sum of all 𝑚 > 1 terms in Eq. (6.7) has magnitude at most

∞∑︁
𝑚=2

1

𝑚!

(︁
4𝑚

√
𝑑
)︁𝑚

𝜃𝑚 ≤
∞∑︁
𝑚=0

(︁
4𝑒
√
𝑑𝜃
)︁𝑚+2

≤ 32𝑒2𝑑𝜃2

assuming 𝜃 ≤ 1
8𝑒

√
𝑑

(where we used the bound 𝑚𝑚/𝑚! ≤ 𝑒𝑚). Combining with Eqs. (6.7,6.10) and
summing over all {𝑖, 𝑗} ∈ 𝐸, we get

⟨𝜓|𝐻|𝜓⟩ ≥ ⟨𝑣|𝐻|𝑣⟩+ |𝐸|
(︀
𝜃𝛼− 32𝑒2𝑑𝜃2

)︀
.

We may then choose 𝜃 = 𝑂(𝛼/𝑑) to get the desired lower bound. ⊓⊔

Let us now see how Theorem 170 is obtained as a consequence of Theorem 171 (the detailed
proof is provided in Section 6.3.2). The lower bound (6.6) applies to any choice of operators {𝑃𝑖}𝑖∈𝑉 .
We will choose these operators in a way that gives the variance bound Eq. (6.2). In the following,
for convenience and without loss of generality, we shall work in a local basis in which our initial
product state is |𝑣⟩ ≡ |0𝑛⟩. Our starting point is the observation that the variance of a 2-local
Hamiltonian can be expressed in this basis as

Var𝑣(𝐻) = ⟨0𝑛|𝐻𝑄1𝐻|0𝑛⟩+ ⟨0𝑛|𝐻𝑄2𝐻|0𝑛⟩,

where 𝑄𝑡 is the projector onto computational basis states with Hamming weight 𝑡 ∈ {1, 2}. This
implies that

⟨0𝑛|𝐻𝑄𝑡𝐻|0𝑛⟩ ≥ Var𝑣(𝐻)/2 (6.11)

for some 𝑡 ∈ {1, 2}. Suppose 𝑡 = 2 and let 𝑋𝑖,𝑌𝑖, and 𝑍𝑖 be the Pauli operators. We define 𝛼1 to
be the RHS of Eq. (6.5) with 𝑃𝑖 = 𝑋𝑖 for all 𝑖, and similarly 𝛼2 with 𝑃𝑖 = (𝑋𝑖 + 𝑌𝑖)/

√
2 for all 𝑖.
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By a direct calculation we see that

𝛼1 =
2

|𝐸|
∑︁

{𝑖,𝑗}∈𝐸

|Im (⟨11|ℎ𝑖𝑗 |00⟩)|

𝛼2 =
2

|𝐸|
∑︁

{𝑖,𝑗}∈𝐸

|Re (⟨11|ℎ𝑖𝑗 |00⟩)| (6.12)

and therefore

⟨0𝑛|𝐻𝑄2𝐻|0𝑛⟩ =
∑︁

{𝑖,𝑗}∈𝐸

|⟨11|ℎ𝑖𝑗 |00⟩|2 ≤ |𝐸|
(︂
𝛼1 + 𝛼2

2

)︂
.

This means max{𝛼1, 𝛼2} ≥ |𝐸|−1⟨0𝑛|𝐻𝑄2𝐻|0𝑛⟩ which together with Eq. (6.11) implies that when
𝑡 = 2, we can efficiently find a series of operators 𝑃𝑖 such that the parameter 𝛼 satisfies 𝛼 ≥
(2|𝐸|)−1Var𝑣(𝐻). By plugging this in Eq. (6.6), we obtain ⟨𝜓|𝐻|𝜓⟩ ≥ ⟨𝑣|𝐻|𝑣⟩+Ω(Var𝑣(𝐻)2

𝑑|𝐸| ). Thus
if 𝑡 = 2 we obtain a better lower bound than the one claimed in Theorem 170. Otherwise, if 𝑡 = 1,
then a simple calculation (the detailed proof is given in Section 6.3.2) shows that one can efficiently
compute a product state with energy at least ⟨𝑣|𝐻|𝑣⟩+Ω(Var(𝐻)2

𝑑2|𝐸| ). In general, the choice between
𝑡 = 1 and 𝑡 = 2 can be efficiently determined. Thus we obtain Theorem 170. In Section 6.3.2, we
show that if |𝑣⟩ is locally optimal for 𝐻, then ⟨0𝑛|𝐻𝑄1𝐻|0𝑛⟩ = 0 and 𝑡 = 2, so we obtain the better
bound described above.

Let us briefly illustrate how these results can be applied to the quantum Max-Cut Hamiltonian
considered in Refs. [GP19, AGM20]. The Hamiltonian is built from local terms ℎ𝑖𝑗 = 𝑤𝑖𝑗Π𝑖𝑗 , where
0 ≤ 𝑤𝑖𝑗 ≤ 1 and Π𝑖𝑗 = (1−𝑋𝑖𝑋𝑗 −𝑌𝑖𝑌𝑗 −𝑍𝑖𝑍𝑗)/4 is the projector onto the antisymmetric state of
two qubits. This Hamiltonian has the special feature that any product state |𝑣⟩ is locally optimal,
and moreover, we have |⟨𝑣⊥𝑖 , 𝑣⊥𝑗 |ℎ𝑖𝑗 |𝑣𝑖, 𝑣𝑗⟩| = ⟨𝑣𝑖, 𝑣𝑗 |ℎ𝑖𝑗 |𝑣𝑖, 𝑣𝑗⟩. Therefore

Var𝑣(𝐻) =
∑︁

{𝑖,𝑗}∈𝐸

⟨𝑣|ℎ𝑖𝑗 |𝑣⟩2 ≥ |𝐸|−1⟨𝑣|𝐻|𝑣⟩2

using Cauchy-Schwarz. We may then efficiently compute a state |𝜓⟩ such that

⟨𝜓|𝐻|𝜓⟩ ≥ ⟨𝑣|𝐻|𝑣⟩+Ω

(︂⟨𝑣|𝐻|𝑣⟩4
𝑑|𝐸|3

)︂
. (6.13)

We see that if the initial state has approximation ratio ⟨𝑣|𝐻|𝑣⟩/|𝐸| = 𝑟 then the state |𝜓⟩ improves
this to 𝑟 +Ω(𝑟4/𝑑) 3.

This example demonstrates the power of Theorem 170 and shows that for the quantum Max-
Cut problem, the approximation ratio of any product state can be improved by applying a shallow
quantum circuit. For more general two-local Hamiltonians, we can guarantee an improvement in the
approximation ratio whenever the condition Var𝑣(𝐻) = Ω(|𝐸|) holds, which we expect for typical
product states and Hamiltonians. Below we discuss two natural extensions of our results. First, we
ask whether one can improve approximation ratios attained by more general families of quantum

3A better bound can be obtained by directly computing the parameter 𝛼 for a randomized choice of operators
{𝑃𝑖}. In that case, E𝛼 ≥ Ω(⟨𝑣|𝐻|𝑣⟩/|𝐸|) which results in an improvement of Ω

(︀
⟨𝑣|𝐻|𝑣⟩2/(𝑑|𝐸|)

)︀
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states. Along these lines, we provide an extension of Theorem 170 to the more general case where
|𝑣⟩ is any state prepared by a quantum circuit of depth 𝐷 = 𝑂(1). Next, we show how one can
improve the approximation ratio achieved by a random product state |𝑣⟩. Using Theorem 171, we
show that the approximation ratio can be improved by Ω(1/𝑑) for any Hamiltonian with nontrivial
two-local interactions, and by Ω(1/

√
𝑑) if the interaction graph is triangle-free.

6.2.2 Improvement of bounded-depth entangled states

Recall that for any 𝑛-qubit quantum circuit and any qubit 𝑗 ∈ [𝑛], we may define the lightcone
ℒ(𝑗) ⊆ [𝑛] which consists of all output qubits that are causally connected to 𝑗. Define the maximum
lightcone size ℓ = max𝑗∈[𝑛] ℒ(𝑗). We have ℓ ≤ 2𝐷 for any depth 𝐷 circuit composed of two-qubit
gates.

Theorem 173. Let |𝑣⟩ = 𝑊 |0𝑛⟩ where 𝑊 is a quantum circuit with maximum lightcone size ℓ.
There is an efficient classical algorithm that computes a quantum circuit 𝑈 such that |𝜓⟩ = 𝑈 |𝑣⟩
satisfies

⟨𝜓|𝐻|𝜓⟩ = ⟨𝑣|𝐻|𝑣⟩+Ω

(︂
Var(𝐻)2

ℓ10𝑑2|𝐸|

)︂
.

For constant-depth circuits we have ℓ = 𝑂(1) and we get the same asymptotic energy improve-
ment as we established previously in Theorem 170 for product states. However, in this case the
circuit 𝑈 that we construct is not constant-depth. In Section 6.3.4, we show that the improvement
stated above can also be obtained for states |𝑣⟩ that are the unique ground states of a gapped ℓ-local
Hamiltonian 𝐹 . In that case, ℓ is replaced by the locality of the Hamiltonian 𝐹 . Thus, Theorem
173 extends to a broad class of tensor network states (such as PEPS of low bond dimension) that
have a gapped parent Hamiltonian.

The theorem provides limitations on the energy that can be achieved by any state |𝑣⟩ produced
by a bounded-depth circuit. In particular, since ⟨𝜓|𝐻|𝜓⟩ ≤ 𝜆max(𝐻), we find that

⟨𝑣|𝐻|𝑣⟩ ≤ 𝜆max(𝐻)− Ω

(︂
Var(𝐻)2

ℓ10𝑑2|𝐸|

)︂
.

This shows that the approximation ratio achievable by constant-depth states |𝑣⟩ with Var(𝐻) =
Ω(|𝐸|) is bounded away from 1. An interesting direction for future work is to explore whether
one can use this fact to exhibit new local Hamiltonian systems with the almost-linear NLTS (No
Low-energy Trivial States) property [AN22, FH14].

6.2.3 Improvement of random assignments

Given an instance of a (classical) constraint satisfaction problem, one may consider the trivial
algorithm in which each variable is chosen independently and uniformly at random. Remarkably,
efficient algorithms which improve over the approximation ratio achieved by this simple strategy
are not likely to exist in the general case [Has01]. On the other hand, for structured cases such
as bounded-degree graphs, improvement is possible. In particular, on degree-𝑑 graphs, one can
efficiently find an assignment satisfying a 𝜇 + Ω(1𝑑) fraction of constraints [Has00]. Here 𝜇 is the
expected fraction of constraints satisfied by a uniformly random assignment. It has been shown
that when a degree-𝑑 graph is triangle-free, there are efficient “local” algorithms that find a binary
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string satisfying a 𝜇+Ω( 1√
𝑑
) fraction of constraints by starting with a uniformly random assignment

[BMO+15, Has19] or quantum superposition [FGG15] and then locally updating each bit/qubit as
a function of the state of its neighbors.

Below we show that this optimal dependence on 𝑑 can be recovered and generalized to the
local Hamiltonian setting by applying our algorithm in Theorem 171 to a randomly chosen product
state. For randomly chosen |𝑣⟩, the parameter 𝛼 in Theorem 171 can be related to the 2-norm of the
quadratic terms in the Pauli expansion of the Hamiltonian. More precisely, for an 𝑛-qubit operator
𝑂 =

∑︀
𝑖<𝑗

∑︀
𝑥,𝑦 𝑓

𝑖𝑗
𝑥𝑦𝜎𝑖𝑥 ⊗ 𝜎𝑗𝑦 where 𝜎0 = 𝐼 and {𝜎1, 𝜎2, 𝜎3} are the Pauli matrices, we define

quad(𝑂) =
∑︁
𝑖<𝑗

∑︁
𝑥>0,𝑦>0

(𝑓 𝑖𝑗𝑥𝑦)
2.

Theorem 174. There is an efficient randomized algorithm that given a Hamiltonian 𝐻 Eq. (6.1)
defined on a 𝑑-regular graph, computes a depth-𝑑+ 1 circuit 𝑈 such that |𝜓⟩ = 𝑈 |𝑣⟩ satisfies

E𝑣⟨𝜓|𝐻|𝜓⟩ ≥ E𝑣⟨𝑣|𝐻|𝑣⟩+Ω

(︂
quad(𝐻)2

𝑑|𝐸|

)︂
.

If the graph is triangle-free then the right-hand side can be replaced with E𝑣⟨𝑣|𝐻|𝑣⟩+Ω
(︁
quad(𝐻)√

𝑑

)︁
.

The proof of Theorem 174 is provided in Section 6.3.3. We also show in Section 6.3.6 that for
triangle-free graphs one can efficiently compute product states matching the approximation ratios
quoted above using a local classical algorithm similar to the ones described in Refs. [Has19,
BMO+15, HM17]. Thus, low-depth quantum circuits are not necessary to achieve the asymptotic
Ω(1/

√
𝑑) scaling in this case. Similar results have been shown before in [HM17] for general 2-local

Hamiltonians. Nevertheless, one may take the output product state of such algorithms and improve
it further using the shallow quantum circuit from Theorem 170.

6.3 Deferred proofs

6.3.1 Proof of Claim 172

Proof. First, we count all such tuples ({𝑘1, ℓ1}, {𝑘2, ℓ2}, . . . {𝑘𝑚, ℓ𝑚}) in which the edge {𝑖, 𝑗} does
not appear. Each one can be generated by choosing a tuple of vertices (𝑣1, 𝑣2, . . . 𝑣𝑚) incident to
{𝑖, 𝑗} and then specifying a neighbor, either 𝑖 or 𝑗, for each of them. An upper bound is obtained
by counting the number of tuples (𝑣1, 𝑣2, . . . 𝑣𝑚) such that each 𝑣𝑝 occurs at least twice and then
multiplying by 2𝑚. Any tuple (𝑣1, 𝑣2, . . . 𝑣𝑚) of this form can be generated as follows. First, for each
𝑖 = 1, 2, . . . ,𝑚 we choose a color 𝑐(𝑖) ∈ {1, 2 . . . ,𝑚/2}. We set 𝑣𝑘 = 𝑣𝑘′ whenever 𝑐(𝑘) = 𝑐(𝑘′). We
then assign a neighbor of 𝑖 or 𝑗 to each color {1, 2, . . . ,𝑚/2}. Since vertices 𝑖 and 𝑗 each have at most
𝑑 neighbors, we see that the number of tuples (𝑣1, 𝑣2, . . . 𝑣𝑚) such that each 𝑣𝑝 occurs at least twice
is at most (𝑚/2)𝑚 · (2𝑑)𝑚/2. The number of tuples of edges ({𝑘1, ℓ1}, {𝑘2, ℓ2), . . . {𝑘𝑚, ℓ𝑚}} ∈ 𝑁×𝑚

𝑖𝑗

in which no vertex in 𝑉 ∖ {𝑖, 𝑗} appears exactly once, and the edge {𝑖, 𝑗} does not occur, is then at
most 2𝑚 · (𝑚/2)𝑚 · (2𝑑)𝑚/2.

In order to account for the appearance of the edge {𝑖, 𝑗}, we fix the number of places 𝑢 where
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the edge appears and then count as before for the 𝑚− 𝑢 places. This number is

𝑚∑︁
𝑢=0

(︂
𝑚

𝑢

)︂
((𝑚− 𝑢)

√
2𝑑)𝑚−𝑢 ≤ (2𝑚

√
𝑑)𝑚.

⊓⊔

6.3.2 Improvement of product states: proof of Theorem 170

In this section we provide the full details of the proof of Theorem 170. It will be convenient to work
in a local basis defined by |𝑣⟩, such that |𝑣⟩ = |0𝑛⟩ and

Var𝑣(𝐻) = ⟨0𝑛|𝐻2|0𝑛⟩ − (⟨0𝑛|𝐻|0𝑛⟩)2.

For ease of notation we write Var(𝐻) = Var𝑣(𝐻). Recall the quantity 𝛼 defined in Eq. (6.5):

𝛼 = E{𝑖,𝑗}∈𝐸 |⟨𝑣𝑖, 𝑣𝑗 |[𝑃𝑖𝑃𝑗 , ℎ𝑖𝑗 ]|𝑣𝑖, 𝑣𝑗⟩|, (6.14)

We will use the following proposition.

Proposition 175. Let 𝑄2 be the projector onto computational basis states with Hamming weight 2.
We can efficiently choose operators {𝑃𝑖}𝑖∈𝑉 such that

𝛼 ≥ 1

|𝐸| · ⟨0
𝑛|𝐻𝑄2𝐻|0𝑛⟩. (6.15)

Proof. Let 𝛼1 be Eq. (6.5) with 𝑃𝑖 = 𝑋𝑖 for all 𝑖, and let 𝛼2 be Eq. (6.5) with 𝑃𝑖 = (𝑋𝑖 + 𝑌𝑖)/
√
2

for all 𝑖. Direct calculation shows that

𝛼1 =
2

|𝐸|
∑︁

{𝑖,𝑗}∈𝐸

⃒⃒
Im
(︀
⟨11|𝑖𝑗 ⊗ ⟨0𝑛−2|ℎ𝑖𝑗 |0𝑛⟩

)︀⃒⃒
𝛼2 =

2

|𝐸|
∑︁

{𝑖,𝑗}∈𝐸

⃒⃒
Re
(︀
⟨11|𝑖𝑗 ⊗ ⟨0𝑛−2|ℎ𝑖𝑗 |0𝑛⟩

)︀⃒⃒
(6.16)

We can express ⟨0𝑛|𝐻𝑄2𝐻|0𝑛⟩ as

⟨0𝑛|𝐻𝑄2𝐻|0𝑛⟩. =
∑︁

{𝑖,𝑗}∈𝐸

|⟨11|𝑖𝑗 ⊗ ⟨0𝑛−2|ℎ𝑖𝑗 |0𝑛⟩|2

=
∑︁

{𝑖,𝑗}∈𝐸

(︀
Im
(︀
⟨11|𝑖𝑗 ⊗ ⟨0𝑛−2|ℎ𝑖𝑗 |0𝑛⟩

)︀)︀2
+
(︀
Re
(︀
⟨11|𝑖𝑗 ⊗ ⟨0𝑛−2|ℎ𝑖𝑗 |0𝑛⟩

)︀)︀2
≤

∑︁
{𝑖,𝑗}∈𝐸

⃒⃒
Im
(︀
⟨11|𝑖𝑗 ⊗ ⟨0𝑛−2|ℎ𝑖𝑗 |0𝑛⟩

)︀⃒⃒
+
⃒⃒
Re
(︀
⟨11|𝑖𝑗 ⊗ ⟨0𝑛−2|ℎ𝑖𝑗 |0𝑛⟩

)︀⃒⃒
= |𝐸| · 𝛼1 + 𝛼2

2
,

where we used the fact that ‖ℎ𝑖𝑗‖ ≤ 1 in going from the second to the third line above. Now the
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last line implies that either 𝛼1 or 𝛼2 achieves the bound from Eq. (6.15). Moreover, the choice of
𝛼1 or 𝛼2 can be efficiently determined. ⊓⊔

Proof of Theorem 170. Let 𝑄𝑡 be the projector onto computational basis states with Hamming
weight 𝑡 ∈ {1, 2}. Since 𝐻 is two-local we have

Var(𝐻) = ⟨0𝑛|𝐻𝑄1𝐻|0𝑛⟩+ ⟨0𝑛|𝐻𝑄2𝐻|0𝑛⟩.

Therefore ⟨0𝑛|𝐻𝑄𝑡𝐻|0𝑛⟩ ≥ Var(𝐻)/2 for some 𝑡 ∈ {1, 2}. If 𝑡 = 2 then we may use Proposition
175 which gives

max{𝛼1, 𝛼2} ≥ 1

2|𝐸|Var(𝐻).

Combining this with Theorem 171, we arrive at

⟨𝜓|𝐻|𝜓⟩ ≥ ⟨0𝑛|𝐻|0𝑛⟩+Ω

(︂
Var(𝐻)2

𝑑|𝐸|

)︂
which is better than the desired lower bound.

Next suppose ⟨0𝑛|𝐻𝑄1𝐻|0𝑛⟩ ≥ Var(𝐻)/2. Define

𝐿 =
𝑛∑︁
𝑗=1

(−1)𝑎𝑗𝑃𝑗

where each 𝑃𝑗 is a single-qubit Pauli operator acting nontrivially only on qubit 𝑗, and 𝑎𝑗 ∈ {0, 1}
is chosen so that

𝑖⟨0𝑛|(−1)𝑎𝑗 [𝑃𝑗 , 𝐻]|0𝑛⟩ = |⟨0𝑛|[𝑃𝑗 , 𝐻]|0𝑛⟩|.
Define |𝜃⟩ = 𝑒−𝑖𝜃𝐿|0𝑛⟩ where 𝜃 is a real parameter that we will fix later. Then

⟨𝜃|𝐻|𝜃⟩ = ⟨0𝑛|𝐻|0𝑛⟩+ 𝜃
𝑛∑︁
𝑗=1

|⟨0𝑛|[𝑃𝑗 , 𝐻]|0𝑛⟩|+ Err,

where

|Err| =

⃒⃒⃒⃒
⃒⃒∑︁
𝑚≥2

𝑖𝑚𝜃𝑚

𝑚!
⟨0𝑛|[𝐿,𝐻]𝑚|0𝑛⟩

⃒⃒⃒⃒
⃒⃒

≤ |𝐸|
∑︁
𝑚≥2

𝜃𝑚4𝑚

𝑚!

≤ 16𝜃2|𝐸|𝑒4𝜃.

In the second line we used the fact that

[𝐿, ℎ𝑖𝑗 ]𝑚 = [(−1)𝑎𝑖𝑃𝑖 + (−1)𝑎𝑗𝑃𝑗 , ℎ𝑖𝑗 ]𝑚
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can be expanded as a sum of 2𝑚 terms each of norm at most 2𝑚. Now define

𝛽 =
1

|𝐸|
𝑛∑︁
𝑗=1

|⟨0𝑛|[𝑃𝑗 , 𝐻]|0𝑛⟩|. (6.17)

and note that since ‖[𝑃𝑗 , 𝐻]‖ ≤ 2𝑑 for all 𝑗 we have

𝛽 ≤ 1

|𝐸|
𝑛∑︁
𝑗=1

2𝑑 ≤ 4.

Then
⟨𝜃|𝐻|𝜃⟩ ≥ ⟨0𝑛|𝐻|0𝑛⟩+ |𝐸|

(︁
𝜃𝛽 − 16𝜃2𝑒4𝜃

)︁
.

Choosing 𝜃 = 𝛽/32 gives

⟨𝜃|𝐻|𝜃⟩ ≥ ⟨0𝑛|𝐻|0𝑛⟩+ |𝐸|
(︂
𝛽2

32
− 𝛽2

64
𝑒𝛽/8

)︂
≥ ⟨0𝑛|𝐻|0𝑛⟩+ |𝐸|

(︂
𝛽2

32
− 𝛽2

64
𝑒1/2

)︂
≥ ⟨0𝑛|𝐻|0𝑛⟩+ 0.001 · |𝐸|𝛽2. (6.18)

Now let 𝛽1 be given by Eq. (6.17) with 𝑃𝑖 = 𝑋𝑖 for all 𝑖, and let 𝛽2 be given by Eq. (6.17) with
𝑃𝑖 = 𝑌𝑖 for all 𝑖. Then

𝛽1 + 𝛽2
2

=
1

2|𝐸|
𝑛∑︁
𝑗=1

|⟨0𝑛|[𝑋𝑗 , 𝐻]|0𝑛⟩|+ |⟨0𝑛|[𝑌𝑗 , 𝐻]|0𝑛⟩|

≥ 1

4𝑑|𝐸|
𝑛∑︁
𝑗=1

|⟨0𝑛|[𝑋𝑗 , 𝐻]|0𝑛⟩|2 + |⟨0𝑛|[𝑌𝑗 , 𝐻]|0𝑛⟩|2

=
1

4𝑑|𝐸|
𝑛∑︁
𝑗=1

|2Im (⟨𝑒𝑗 |𝐻|0𝑛⟩)|2 + |2Re (⟨𝑒𝑗 |𝐻|0𝑛⟩)|2

=
1

𝑑|𝐸| ⟨0
𝑛|𝐻𝑄1𝐻|0𝑛⟩

≥ 1

2𝑑|𝐸|Var(𝐻).

Therefore either 𝛽1 or 𝛽2 is larger than the RHS above. Plugging this into Eq. (6.18) we arrive at

⟨𝜃|𝐻|𝜃⟩ ≥ ⟨0𝑛|𝐻|0𝑛⟩+Ω

(︂
Var(𝐻)2

𝑑2|𝐸|

)︂
.

⊓⊔

The improvement in energy ⟨𝑣|𝐻|𝑣⟩ in Theorem 170 is extensive, proportional to |𝐸|, when
Var𝑣(𝐻) = Ω(|𝐸|). Here we argue that this condition on the variance is mild in the quantum
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setting. One way to see this is using the following expression for the variance:

Var𝑣(𝐻) =
∑︁

{𝑖,𝑗}∩{𝑘,𝑙}≠∅

(⟨𝑣|ℎ𝑖𝑗ℎ𝑘𝑙|𝑣⟩ − ⟨𝑣|ℎ𝑖𝑗 |𝑣⟩ · ⟨𝑣|ℎ𝑘𝑙|𝑣⟩) . (6.19)

Since 𝐺 is 𝑑-regular, the number of terms in the sum is 𝑂(𝑑|𝐸|). So condition Var𝑣(𝐻) = Ω(|𝐸|) is
satisfied if the sum is proportional to the number of terms appearing in it.

A more precise argument can be given by considering the expectation of Var𝑣(𝐻) for a fixed
Hamiltonian and random product states. Suppose the Hamiltonian 𝐻 in the Pauli basis is given
by 𝐻 =

∑︀
{𝑖,𝑗}∈𝐸

∑︀
𝑎,𝑏 𝑓

𝑖𝑗
𝑎,𝑏𝜎

𝑖
𝑎 ⊗ 𝜎𝑗𝑏 where 𝜎0 = 𝐼 and {𝜎1, 𝜎2, 𝜎3} are the Pauli matrices. We define

as before quad(𝐻) =
∑︀

{𝑖,𝑗}∈𝐸
∑︀

𝑎>0,𝑏>0(𝑓
𝑖𝑗
𝑎,𝑏)

2. By choosing vectors |𝑣1⟩, . . . , |𝑣𝑛⟩ uniformly at
random, we get E𝑣⟨𝑣|𝜎𝑖𝑎𝜎𝑖𝑏|𝑣⟩ = 𝛿𝑎,𝑏 and E𝑣⟨𝑣|𝜎𝑖𝑎⊗𝜎𝑗𝑏 |𝑣⟩ = 𝛿𝑎,0𝛿𝑏,0. We also have E𝑣⟨𝑣|𝜎𝑖𝑎|𝑣⟩⟨𝑣|𝜎𝑖𝑏|𝑣⟩ =
1/3 if 𝑎 = 𝑏 ̸= 0 and E𝑣⟨𝑣|𝜎𝑖𝑎|𝑣⟩⟨𝑣|𝜎𝑖𝑏|𝑣⟩ = 0 if 𝑎 ̸= 𝑏. To derive the last two equations, we can write

E𝑣⟨𝑣|𝜎𝑖𝑎|𝑣⟩⟨𝑣|𝜎𝑖𝑏|𝑣⟩ = ⟨00| · E𝑈∼Haar

[︁
(𝑈⊗2)† · 𝜎𝑎 ⊗ 𝜎𝑏 · 𝑈⊗2

]︁
· |00⟩.

It follows from the properties of the Haar measure (see a similar derivation in Eq. (6.26)) that

E𝑈∼Haar

[︁
(𝑈⊗2)† · 𝜎𝑎 ⊗ 𝜎𝑏 · 𝑈⊗2

]︁
=

1

3

(︂
tr(𝜎𝑎 ⊗ 𝜎𝑏)(𝐼 −

1

2
𝑆) + tr(𝜎𝑎 ⊗ 𝜎𝑏 · 𝑆)(𝑆 − 1

2
𝐼)

)︂
,

where 𝑆 is the swap operator. From here, a direct calculation leads to the claimed equations. Using
these equations, we see that when 𝑖 = 𝑘 and 𝑗 ̸= 𝑙 in Eq. (6.19), the only terms that have a non-zero
contribution in the sum are of the form

⟨𝑣|(𝜎𝑖𝑎 ⊗ 𝜎𝑗0)(𝜎
𝑖
𝑎 ⊗ 𝜎𝑙0)|𝑣⟩ − ⟨𝑣|𝜎𝑖𝑎 ⊗ 𝜎𝑗0|𝑣⟩ · ⟨𝑣|𝜎𝑖𝑎 ⊗ 𝜎𝑙0|𝑣⟩,

with 𝑎 > 0. When 𝑖 = 𝑘 and 𝑗 = 𝑙, the relevant terms involve

⟨𝑣|(𝜎𝑖𝑎 ⊗ 𝜎𝑗𝑏)(𝜎
𝑖
𝑎 ⊗ 𝜎𝑗𝑏)|𝑣⟩ − ⟨𝑣|𝜎𝑖𝑎 ⊗ 𝜎𝑗𝑏 |𝑣⟩ · ⟨𝑣|𝜎𝑖𝑎 ⊗ 𝜎𝑗𝑏 |𝑣⟩..

Substituting the expectation of Eq. (6.19), we arrive at the following expression for E𝑣Var𝑣(𝐻):

E𝑣Var𝑣(𝐻) =
8

9

∑︁
{𝑖,𝑗}∈𝐸

∑︁
𝑎>0,𝑏>0

(𝑓 𝑖𝑗𝑎,𝑏)
2 +

2

3

∑︁
𝑖∈𝑉,𝑎>0

⎛⎝ ∑︁
𝑗:{𝑖,𝑗}∈𝐸

𝑓 𝑖𝑗𝑎,0

⎞⎠2

≥ 8

9
quad(𝐻) (6.20)

For typical Hamiltonians where the coefficients 𝑓 𝑖𝑗𝑎,𝑏 with 𝑎 > 0, 𝑏 > 0 are non-zero constants, we see
that E𝑣Var𝑣(𝐻) = Ω(|𝐸|).

Finally, let us discuss a special case in which the bound from Theorem 170 can be improved.
We say that a product state |𝑣⟩ is locally optimal for 𝐻 if, for any single-qubit Pauli 𝑄 we have

𝑑

𝑑𝜑
⟨𝑣|𝑒−𝑖𝜑𝑄𝐻𝑒𝑖𝜑𝑄|𝑣⟩

⃒⃒
𝜑=0

= 0,

or equivalently
⟨𝑣|[𝑄,𝐻]|𝑣⟩ = 0. (6.21)
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As in the above, for simplicity we shall work in a local basis defined by 𝑣, so that |𝑣⟩ = |0𝑛⟩.

Claim 176. Suppose |0𝑛⟩ is locally optimal for 𝐻. Then for any string 𝑧 ∈ {0, 1}𝑛 with Hamming
weight |𝑧| = 1 we have

⟨𝑧|𝐻|0𝑛⟩ = 0. (6.22)

Proof. Without loss of generality consider the case where 𝑧 = 10𝑛−1. Then

|2Im(⟨𝑧|𝐻|0𝑛⟩)| = |⟨0𝑛|[𝑋1, 𝐻]|0𝑛⟩| = 0 and |2Re(⟨𝑧|𝐻|0𝑛⟩)| = |⟨0𝑛|[𝑌1, 𝐻]|0𝑛⟩| = 0,

where we used Eq. (6.21). ⊓⊔

Claim 177. Suppose |0𝑛⟩ is locally optimal for 𝐻. We may efficiently choose {𝑃𝑖} and {𝜃𝑖𝑗} such
that

⟨𝜓|𝐻|𝜓⟩ ≥ ⟨0𝑛|𝐻|0𝑛⟩+Ω

(︂
Var(𝐻)2

𝑑|𝐸|

)︂
. (6.23)

Proof. Since 𝐻 is two-local we have

Var(𝐻) = ⟨0𝑛|𝐻𝑄1𝐻|0𝑛⟩+ ⟨0𝑛|𝐻𝑄2𝐻|0𝑛⟩ = ⟨0𝑛|𝐻𝑄2𝐻|0𝑛⟩,

where in the last equality we used claim 176. The claim then follows directly by combining Propo-
sition 175 and Theorem 171. ⊓⊔

6.3.3 Improvement of random states: proof of Theorem 174

General degree-𝑑 graphs

We prove the first part of Theorem 174 regarding general degree-𝑑 graphs, which is implied by the
following lemma.

Lemma 178. Let |𝑣⟩ = |𝑣1⟩ ⊗ |𝑣2⟩ . . . ⊗ |𝑣𝑛⟩ where each 𝑣𝑖 is a Haar random single-qubit state.
Then there is an efficient randomized process with random coins 𝑟, that constructs the matrices 𝑃𝑖
(depending on both 𝑟 and |𝑣⟩) such that the resulting state |𝜓𝑟,𝑣⟩ satisfies

E𝑟,𝑣⟨𝜓𝑟,𝑣|𝐻|𝜓𝑟,𝑣⟩ ≥ E𝑣⟨𝑣|𝐻|𝑣⟩+Ω

(︂
quad(𝐻)2

𝑑|𝐸|

)︂
.

Proof. Pick |𝑣⟩ = ⊗𝑖|𝑣𝑖⟩, where each |𝑣𝑖⟩ is chosen uniformly at random from Haar measure on
qubits. Also choose 𝑛 uniformly random real numbers 𝜇𝑖 i.i.d in the interval [0, 𝜋2 ]. The latter
choice is made using the coins 𝑟. Given |𝑣⟩, 𝑟 define 𝑃𝑖 = 𝑒𝑖𝜇𝑖 |𝑣𝑖⟩⟨𝑣⊥𝑖 | + 𝑒−𝑖𝜇𝑖 |𝑣⊥𝑖 ⟩⟨𝑣𝑖| (we drop the
labels |𝑣⟩, 𝑟 from 𝑃𝑖 for convenience). Observe that ⟨𝑣𝑖|𝑃𝑖|𝑣𝑖⟩ = 0 and ‖𝑃𝑖‖ ≤ 1, as required. Then
𝛼𝑣,𝑟 (as given in Eq (6.5) ) can be evaluated to be

𝛼𝑣,𝑟 = E{𝑖,𝑗}∈𝐸

⃒⃒⃒(︁
𝑒𝑖(𝜇𝑖+𝜇𝑗)⟨𝑣⊥𝑖 , 𝑣⊥𝑗 |ℎ𝑖𝑗 |𝑣𝑖, 𝑣𝑗⟩ − 𝑒−𝑖(𝜇𝑖+𝜇𝑗)⟨𝑣𝑖, 𝑣𝑗 |ℎ𝑖𝑗 |𝑣⊥𝑖 , 𝑣⊥𝑗 ⟩

)︁⃒⃒⃒
= 2E{𝑖,𝑗}∈𝐸

⃒⃒⃒
Im
(︁
𝑒𝑖(𝜇𝑖+𝜇𝑗)⟨𝑣⊥𝑖 , 𝑣⊥𝑗 |ℎ𝑖𝑗 |𝑣𝑖, 𝑣𝑗⟩

)︁⃒⃒⃒
. (6.24)
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Let ⟨𝑣⊥𝑖 , 𝑣⊥𝑗 |ℎ𝑖𝑗 |𝑣𝑖, 𝑣𝑗⟩ = 𝑒𝑖𝜅𝑖,𝑗 |⟨𝑣⊥𝑖 , 𝑣⊥𝑗 |ℎ𝑖𝑗 |𝑣𝑖, 𝑣𝑗⟩| be the polar decomposition. Then

|Im
(︁
𝑒𝑖(𝜇𝑖+𝜇𝑗)⟨𝑣⊥𝑖 , 𝑣⊥𝑗 |ℎ𝑖𝑗 |𝑣𝑖, 𝑣𝑗⟩

)︁
| = | sin (𝜇𝑖 + 𝜇𝑗 + 𝜅𝑖,𝑗) | · |⟨𝑣⊥𝑖 , 𝑣⊥𝑗 |ℎ𝑖𝑗 |𝑣𝑖, 𝑣𝑗⟩|.

Note that

E𝑟| sin (𝜇𝑖 + 𝜇𝑗 + 𝜅𝑖,𝑗) | =
4

𝜋2

∫︁ 𝜋
2

0

∫︁ 𝜋
2

0
| sin (𝜇𝑖 + 𝜇𝑗 + 𝜅𝑖,𝑗) |𝑑𝜇𝑖𝑑𝜇𝑗 ≥

2

5
,

for all 𝜅𝑖,𝑗 . Then Eq 6.24 ensures that

E𝑟𝛼𝑣,𝑟 = 2E{𝑖,𝑗}∈𝐸E𝑟|Im
(︁
𝑒𝑖(𝜇𝑖+𝜇𝑗)⟨𝑣⊥𝑖 , 𝑣⊥𝑗 |ℎ𝑖𝑗 |𝑣𝑖, 𝑣𝑗⟩

)︁
| ≥ 4

5
· E{𝑖,𝑗}∈𝐸 |⟨𝑣⊥𝑖 , 𝑣⊥𝑗 |ℎ𝑖𝑗 |𝑣𝑖, 𝑣𝑗⟩|.

Then we can evaluate

E𝑣,𝑟𝛼𝑣,𝑟 ≥
4

5
· E{𝑖,𝑗}∈𝐸

∫︁
|
(︁
⟨𝑣⊥𝑖 , 𝑣⊥𝑗 |ℎ𝑖𝑗 |𝑣𝑖, 𝑣𝑗⟩

)︁
|𝑑𝑣𝑖𝑑𝑣𝑗

≥ 4

5
· E{𝑖,𝑗}∈𝐸

∫︁
|⟨𝑣⊥𝑖 , 𝑣⊥𝑗 |ℎ𝑖𝑗 |𝑣𝑖, 𝑣𝑗⟩|2𝑑𝑣𝑖𝑑𝑣𝑗

=
4

5
· E{𝑖,𝑗}∈𝐸

∫︁
tr
(︁
|𝑣⊥𝑖 , 𝑣⊥𝑗 ⟩⟨𝑣⊥𝑖 , 𝑣⊥𝑗 |ℎ𝑖𝑗 |𝑣𝑖, 𝑣𝑗⟩⟨𝑣𝑖, 𝑣𝑗 |ℎ𝑖𝑗

)︁
𝑑𝑣𝑖𝑑𝑣𝑗

=
4

5
· E{𝑖,𝑗}∈𝐸

∫︁
⟨11|

(︁
𝑈 †
𝑖 ⊗ 𝑉 †

𝑗

)︁
ℎ𝑖𝑗 (𝑈𝑖 ⊗ 𝑉𝑗) |00⟩⟨00|

(︁
𝑈 †
𝑖 ⊗ 𝑉 †

𝑗

)︁
ℎ𝑖𝑗 (𝑈𝑖 ⊗ 𝑉𝑗) |11⟩𝑑𝑈𝑖𝑑𝑉𝑗

=
4

5
· E{𝑖,𝑗}∈𝐸

∫︁
⟨1100|

(︁
𝑈 †
𝑖1 ⊗ 𝑉 †

𝑗1 ⊗ 𝑈 †
𝑖2 ⊗ 𝑉 †

𝑗2

)︁
ℎ𝑖1,𝑗1 ⊗ ℎ𝑖2,𝑗2 (𝑈𝑖1 ⊗ 𝑉𝑗1 ⊗ 𝑈𝑖2 ⊗ 𝑉𝑗2) |0011⟩𝑑𝑈𝑖𝑑𝑉𝑗 ,

(6.25)

where in the second last equality we fixed a basis {|0⟩, |1⟩} for each qubit and introduced random
unitaries 𝑈𝑖, 𝑉𝑗 that specify |𝑣𝑖⟩ = 𝑈𝑖|0⟩, |𝑣𝑗⟩ = 𝑉𝑗 |0⟩. Using the well known properties of Haar
integral, we have∫︁ (︁

𝑈 †
𝑖1 ⊗ 𝑉 †

𝑗1 ⊗ 𝑈 †
𝑖2 ⊗ 𝑉 †

𝑗2

)︁
ℎ𝑖1,𝑗1 ⊗ ℎ𝑖2,𝑗2 (𝑈𝑖1 ⊗ 𝑉𝑗1 ⊗ 𝑈𝑖2 ⊗ 𝑉𝑗2) 𝑑𝑈𝑖𝑑𝑉𝑗

= 𝑎id𝑖1,𝑖2 ⊗ id𝑗1,𝑗2 + 𝑏𝑆𝑖1,𝑖2 ⊗ id𝑗1,𝑗2 + 𝑐id𝑖1,𝑖2 ⊗ 𝑆𝑗1,𝑗2 + 𝑑𝑆𝑖1,𝑖2 ⊗ 𝑆𝑗1,𝑗2. (6.26)

Above, id is the identity operator, 𝑆 is the swap operator and the subscripts represent the qubits
on which the operator acts. Coefficients 𝑎, 𝑏, 𝑐, 𝑑 can be evaluated using the following system of
equations, obtained from Eq. 6.26 by tracing each of the four operators.

(tr𝑖,𝑗ℎ𝑖𝑗)
2 = 16𝑎+ 8𝑏+ 8𝑐+ 4𝑑

tr𝑗 (tr𝑖ℎ𝑖𝑗tr𝑖ℎ𝑖𝑗) = 8𝑎+ 4𝑏+ 16𝑐+ 8𝑑

tr𝑖 (tr𝑗ℎ𝑖𝑗tr𝑗ℎ𝑖𝑗) = 8𝑎+ 16𝑏+ 4𝑐+ 8𝑑

tr𝑖,𝑗
(︀
ℎ2𝑖𝑗
)︀
= 4𝑎+ 8𝑏+ 8𝑐+ 16𝑑.
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One can solve for 𝑑 to obtain

𝑑 =
(tr𝑖,𝑗ℎ𝑖𝑗)

2

36
+

tr𝑖,𝑗

(︁
ℎ2𝑖𝑗

)︁
9

− tr𝑗 (tr𝑖ℎ𝑖𝑗tr𝑖ℎ𝑖𝑗) + tr𝑖 (tr𝑗ℎ𝑖𝑗tr𝑗ℎ𝑖𝑗)

18
.

In order to obtain a simpler lower bound and see that 𝑑 is positive, we expand ℎ𝑖𝑗 =
∑︀

𝑥,𝑦 𝑓
𝑖,𝑗
𝑥,𝑦𝜎𝑖𝑥⊗𝜎𝑗𝑦

in the two qubit Pauli basis. Then

(tr𝑖,𝑗ℎ𝑖𝑗)
2 = 16

(︁
𝑓 𝑖,𝑗0,0

)︁2
, tr𝑖,𝑗

(︀
ℎ2𝑖𝑗
)︀
= 4

∑︁
𝑥,𝑦

(︀
𝑓 𝑖,𝑗𝑥,𝑦

)︀2
,

tr𝑗 (tr𝑖ℎ𝑖𝑗tr𝑖ℎ𝑖𝑗) = 8
∑︁
𝑦

(︁
𝑓 𝑖,𝑗0,𝑦

)︁2
, tr𝑖 (tr𝑗ℎ𝑖𝑗tr𝑗ℎ𝑖𝑗) = 8

∑︁
𝑦

(︁
𝑓 𝑖,𝑗𝑦,0

)︁2
.

Hence,

(tr𝑖,𝑗ℎ𝑖𝑗)
2

36
+

tr𝑖,𝑗

(︁
ℎ2𝑖𝑗

)︁
9

− tr𝑗 (tr𝑖ℎ𝑖𝑗tr𝑖ℎ𝑖𝑗) + tr𝑖 (tr𝑗ℎ𝑖𝑗tr𝑗ℎ𝑖𝑗)

18

=
4

9

(︃(︁
𝑓 𝑖,𝑗0,0

)︁2
+
∑︁
𝑥,𝑦

(︀
𝑓 𝑖,𝑗𝑥,𝑦

)︀2 −∑︁
𝑦

(︁
𝑓 𝑖,𝑗0,𝑦

)︁2
−
∑︁
𝑦

(︁
𝑓 𝑖,𝑗𝑦,0

)︁2)︃

=
4

9

⎛⎝ ∑︁
𝑥>0,𝑦>0

(︀
𝑓 𝑖,𝑗𝑥,𝑦

)︀2⎞⎠ .

Conjugating Eq. 6.26 with ⟨1100| (·) |0011⟩, it can be seen that only the term corresponding to 𝑑
survives and evaluates to 1. Thus, Eq. 6.25 gives

E𝑣,𝑟𝛼𝑣,𝑟 ≥

4

5
E{𝑖,𝑗}∈𝐸

⎛⎝(tr𝑖,𝑗ℎ𝑖𝑗)
2

36
+

tr𝑖,𝑗

(︁
ℎ2𝑖𝑗

)︁
9

− tr𝑗 (tr𝑖ℎ𝑖𝑗tr𝑖ℎ𝑖𝑗) + tr𝑖 (tr𝑗ℎ𝑖𝑗tr𝑗ℎ𝑖𝑗)

18

⎞⎠
=

16

45
E{𝑖,𝑗}∈𝐸

⎛⎝ ∑︁
𝑥>0,𝑦>0

(︀
𝑓 𝑖,𝑗𝑥,𝑦

)︀2⎞⎠ =
16

45

quad(𝐻)

|𝐸| .

Thus, using the convexity of square function,

E𝑣,𝑟𝛼2
𝑣,𝑟 ≥

162

452

(︂
quad(𝐻)

|𝐸|

)︂2

≥ 1

8

(︂
quad(𝐻)

|𝐸|

)︂2

.

This completes the proof by employing Theorem 171. ⊓⊔

Triangle-free graphs

In this section we establish the second part of Theorem 174, which concerns triangle-free graphs.
The proof is based on the following exact expression. It will be convenient in what follows to work
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in a local basis in which the product state of interest is |𝑣⟩ = |0𝑛⟩.

Lemma 179 (Improvement for triangle-free Hamiltonians). Suppose 𝐺 is a triangle-free,
degree-𝑑 graph. Suppose we are given single-qubit Hermitian operators {𝑃𝑖}𝑖∈[𝑛] satisfying 𝑃 2

𝑖 = 𝐼

and ⟨0|𝑃𝑖|0⟩ = 0 for all 𝑖 ∈ [𝑛], and consider the state |𝜓⟩ = 𝑒𝑖
∑︀

{𝑟,𝑠}∈𝐸 𝜃𝑟𝑠𝑃𝑟𝑃𝑠 |0𝑛⟩ as a function of
the real parameters {𝜃𝑟𝑠}. Define

𝛼𝑘𝑙 = |⟨00|[ℎ𝑘𝑙, 𝑃𝑘𝑃𝑙]|00⟩|

We can efficiently choose 𝜃𝑖𝑗 ∈ {±𝜃} for each edge {𝑖, 𝑗} ∈ 𝐸 so that

⟨𝜓|ℎ𝑘𝑙|𝜓⟩ =
1

4
Tr(ℎ𝑘𝑙) +

1

4
Tr(ℎ𝑘𝑙𝑍𝑘𝑍𝑙) cos

2𝑑−2(2𝜃) +
1

4
Tr(ℎ𝑘𝑙(𝑍𝑘 + 𝑍𝑙)) cos

𝑑(2𝜃).+
𝛼𝑘𝑙
2

sin(2𝜃) cos𝑑−1(2𝜃)

(6.27)

for all edges {𝑘, 𝑙} ∈ 𝐸

Proof. We have
⟨𝜓|ℎ𝑘𝑙|𝜓⟩ = ⟨0𝑛|𝑉 †

𝑘𝑙ℎ𝑘𝑙(𝜃)𝑉𝑘𝑙|0𝑛⟩ (6.28)

where ℎ𝑘𝑙(𝜃𝑘𝑙) = 𝑒−𝑖𝜃𝑘𝑙𝑃𝑘𝑃𝑙ℎ𝑘𝑙𝑒
𝑖𝜃𝑘𝑙𝑃𝑘𝑃𝑙 and

𝑉𝑘𝑙 =
∏︁

{𝑘,𝑠}∈𝐸∖{𝑘,𝑙}

𝑒𝑖𝜃𝑘𝑠𝑃𝑘𝑃𝑠
∏︁

{𝑟,𝑙}∈𝐸∖{𝑘,𝑙}

𝑒𝑖𝜃𝑟𝑙𝑃𝑟𝑃𝑙 (6.29)

=
∏︁

{𝑘,𝑠}∈𝐸∖{𝑘,𝑙}

(cos(𝜃) + 𝑖 sin(𝜃𝑘𝑠)𝑃𝑘𝑃𝑠)
∏︁

{𝑟,𝑙}∈𝐸∖{𝑘,𝑙}

(cos(𝜃) + 𝑖 sin(𝜃𝑟𝑙)𝑃𝑟𝑃𝑙) . (6.30)

Plugging Eq. (6.30) into Eq. (6.28) and using ⟨0|𝑃𝑖|0⟩ = 0 and the fact that 𝐺 is triangle-free gives

⟨𝜓|ℎ𝑘𝑙|𝜓⟩ =
∑︁

𝐴⊆𝑁(𝑘)∖{𝑙}

∑︁
𝐵⊆𝑁(𝑙)∖{𝑘}

(︀
cos2(𝜃)

)︀2𝑑−2−|𝐴|−|𝐵| (︀
sin2(𝜃)

)︀|𝐴|+|𝐵|

· ⟨0𝑛|
(︃∏︁
𝑠∈𝐴

𝑃𝑘𝑃𝑠
∏︁
𝑟∈𝐵

𝑃𝑟𝑃𝑙

)︃
ℎ𝑘𝑙(𝜃𝑘𝑙)

(︃∏︁
𝑠∈𝐴

𝑃𝑘𝑃𝑠
∏︁
𝑟∈𝐵

𝑃𝑟𝑃𝑙

)︃
|0𝑛⟩

In the above we also used our choice |𝜃𝑖𝑗 | = 𝜃 for all edges {𝑖, 𝑗} ∈ 𝐸. Observe that the matrix
element appearing in the above depends only on the parity (even/odd) of |𝐴| and |𝐵|. In particular,

⟨𝜓|ℎ𝑘𝑙|𝜓⟩ = 𝐹𝐸𝐸 + 𝐹𝐸𝑂 + 𝐹𝑂𝐸 + 𝐹𝑂𝑂

where the even/even term is

𝐹𝐸𝐸 = ⟨00|ℎ𝑘𝑙(𝜃𝑘𝑙)|00⟩

⎛⎝ ∑︁
𝑗=0,2,...

(︂
𝑑− 1

𝑗

)︂(︀
cos2(𝜃)

)︀𝑑−1−𝑗 (︀
sin2(𝜃)

)︀𝑗⎞⎠2

(6.31)

= ⟨00|ℎ𝑘𝑙(𝜃𝑘𝑙)|00⟩
1

4

(︁
1 + cos𝑑−1(2𝜃)

)︁2
, (6.32)
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and by similar calculations one arrives at

𝐹𝐸𝑂 = ⟨10|ℎ𝑘𝑙(𝜃𝑘𝑙)|10⟩
1

4

(︁
1− cos2𝑑−2(2𝜃)

)︁
(6.33)

𝐹𝑂𝐸 = ⟨01|ℎ𝑘𝑙(𝜃𝑘𝑙)|01⟩
1

4

(︁
1− cos2𝑑−2(2𝜃)

)︁
(6.34)

𝐹𝑂𝑂 = ⟨11|ℎ𝑘𝑙(𝜃𝑘𝑙)|11⟩
1

4

(︁
1− cos𝑑−1(2𝜃)

)︁2
(6.35)

Now for ease of presentation in the following we write 𝑐 = cos𝑑−1(2𝜃) and 𝑎𝑥𝑦 = ⟨𝑥𝑦|ℎ𝑘𝑙(𝜃𝑘𝑙)|𝑥𝑦⟩,
for 𝑥, 𝑦 ∈ {0, 1}. Then expanding the above expression gives

⟨𝜓|ℎ𝑘𝑙|𝜓⟩ = 𝐹𝐸𝐸 + 𝐹𝐸𝑂 + 𝐹𝑂𝐸 + 𝐹𝑂𝑂 (6.36)

= 𝑎00 + (1− 𝑐)

(︂
𝑎01 + 𝑎10

2
− 𝑎00

)︂
+

1

4
(1− 𝑐)2 (𝑎11 + 𝑎00 − 𝑎01 − 𝑎10) . (6.37)

Now let

𝑏𝑥𝑦 = ⟨𝑥𝑦|ℎ𝑘𝑙|𝑥𝑦⟩. (6.38)

So that

𝑎00 = cos2(𝜃)𝑏00 + sin2(𝜃)𝑏11 + 𝑖 cos(𝜃) sin(𝜃𝑘𝑙)⟨00|[ℎ𝑘𝑙, 𝑃𝑘𝑃𝑙]|00⟩.

We now fix the sign of 𝜃𝑘𝑙 so that

𝑎00 = cos2(𝜃)𝑏00 + sin2(𝜃)𝑏11 +
1

2
sin(2𝜃)𝛼𝑘𝑙. (6.39)

With this choice we have

𝑎11 = cos2(𝜃)𝑏11 + sin2(𝜃)𝑏00 −
1

2
sin(2𝜃)𝛼𝑘𝑙. (6.40)

To compute the third term in the above equation we used the fact that 𝑃 2
𝑘 = 𝑃 2

𝑙 = 𝐼 and ⟨0|𝑃𝑘|0⟩ =
⟨0|𝑃𝑙|0⟩ = 0 which implies

⟨11|[𝑃𝑘𝑃𝑙, ℎ𝑘𝑙]|11⟩ = ⟨00|𝑃𝑘𝑃𝑙[𝑃𝑘𝑃𝑙, ℎ𝑘𝑙]𝑃𝑘𝑃𝑙|00⟩ = −⟨00|[𝑃𝑘𝑃𝑙, ℎ𝑘𝑙]|00⟩.

Similarly, by a direct calculation we get

𝑎01 + 𝑎10 = 𝑏10 + 𝑏01. (6.41)
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Plugging Eqs. (6.39, 6.40, 6.41) into Eq. (6.37) we get

⟨𝜓|ℎ𝑘𝑙|𝜓⟩ = 𝑏00 + (𝑎00 − 𝑏00)𝑐+ (1− 𝑐)

(︂
𝑏01 + 𝑏10

2
− 𝑏00

)︂
+

1

4
(1− 𝑐)2 (𝑏00 + 𝑏11 − 𝑏10 − 𝑏01)

= 𝑏00 +
𝛼𝑘𝑙
2

sin(2𝜃) cos𝑑−1(2𝜃) + sin2(𝜃) cos𝑑−1(2𝜃) (𝑏11 − 𝑏00)

+ (1− cos𝑑−1(2𝜃))

(︂
𝑏01 + 𝑏10

2
− 𝑏00

)︂
+

1

4
(1− cos𝑑−1(2𝜃))2 (𝑏00 + 𝑏11 − 𝑏10 − 𝑏01)

(6.42)

Rearranging the above expression we arrive at

⟨𝜓|ℎ𝑘𝑙|𝜓⟩ =
𝛼𝑘𝑙
2

sin(2𝜃) cos𝑑−1(2𝜃) + 𝑏00

(︂
1

4
+

1

4
cos2𝑑−2(2𝜃) +

1

2
cos𝑑(2𝜃)

)︂
+ 𝑏11

(︂
1

4
+

1

4
cos2𝑑−2(2𝜃)− 1

2
cos𝑑(2𝜃)

)︂
+ (𝑏01 + 𝑏10)

(︂
1

4
− 1

4
cos2𝑑−2(2𝜃)

)︂
(6.43)

By noting that
∑︀

𝑥,𝑦 𝑏𝑥𝑦 = Tr(ℎ𝑘𝑙),
∑︀

𝑥,𝑦(−1)𝑥+𝑦𝑏𝑥𝑦 = Tr(ℎ𝑘𝑙𝑍𝑘𝑍𝑙), and 𝑏00 − 𝑏11 =
1

2
Tr(ℎ𝑘𝑙(𝑍𝑘 + 𝑍𝑙)), we arrive at Eq. (6.27).

⊓⊔

Using the expression in (6.27), we prove the bound for triangle-free graphs from Theorem 174:

Proof. As shown above, the exact formula for the energy of |𝜓⟩ = 𝑉 (𝜃)|0𝑛⟩ on a triangle-free graph
is

⟨𝜓|ℎ𝑘𝑙|𝜓⟩ =
1

4
Tr(ℎ𝑘𝑙) +

1

4
Tr(ℎ𝑘𝑙𝑍𝑘𝑍𝑙) cos

2𝑑−2(2𝜃)

+
1

4
Tr(ℎ𝑘𝑙(𝑍𝑘 + 𝑍𝑙)) cos

𝑑(2𝜃).+
𝛼𝑘𝑙
2

sin(2𝜃) cos𝑑−1(2𝜃). (6.44)

Here 𝛼𝑘𝑙 depends on the choices of 𝑃𝑘, 𝑃𝑙. We either choose 𝑃𝑖 = 𝑋𝑖 for all 𝑖, or 𝑃𝑖 = (𝑋 + 𝑌 )𝑖/
√
2

for all 𝑖, each with probability 1/2. Then

E(𝛼𝑘𝑙) = 2|Re(⟨00|ℎ𝑘𝑙|11⟩)|+ 2|Im(⟨00|ℎ𝑘𝑙|11⟩)| ≥ 2|⟨00|ℎ𝑘𝑙|11⟩|.

Substituting in Eq. (6.44) gives

E (⟨𝜓|ℎ𝑘𝑙|𝜓⟩) ≥
1

4
Tr(ℎ𝑘𝑙) +

1

4
Tr(ℎ𝑘𝑙𝑍𝑘𝑍𝑙) cos

2𝑑−2(2𝜃)

+
1

4
Tr(ℎ𝑘𝑙(𝑍𝑘 + 𝑍𝑙)) cos

𝑑(2𝜃).+ |⟨00|ℎ𝑘𝑙|11⟩| sin(2𝜃) cos𝑑−1(2𝜃). (6.45)

Now instead of using the starting state |0𝑛⟩, suppose we start from a random computational basis
state |𝑠⟩ = 𝑋(𝑠)|0𝑛⟩. Running through the above argument in the rotated basis defined by |𝑠⟩ we
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see that for a suitable random choice of {𝑃𝑖} we have

E (⟨𝜓|ℎ𝑘𝑙|𝜓⟩) ≥
1

4
(Tr(ℎ𝑘𝑙)) +

|⟨00|ℎ𝑘𝑙|11⟩|+ |⟨01|ℎ𝑘𝑙|10⟩|
2

sin(2𝜃) cos𝑑−1(2𝜃)

≥ 1

4
(Tr(ℎ𝑘𝑙)) +

1

4
|Tr(ℎ𝑘𝑙𝑋𝑘𝑋𝑙)| sin(2𝜃) cos𝑑−1(2𝜃). (6.46)

Here we used the fact that

E𝑠 (Tr(𝑋(𝑠)ℎ𝑘𝑙𝑋(𝑠)𝑍𝑘𝑍𝑙)) = E𝑠 (Tr(𝑋(𝑠)ℎ𝑘𝑙𝑋(𝑠)(𝑍𝑘 + 𝑍𝑙))) = 0.

Summing Eq. (6.46) over all edges {𝑘, 𝑙} ∈ 𝐸 gives

E (⟨𝜓|𝐻|𝜓⟩) ≥ 1

4
(Tr(𝐻)) +

1

4
sin(2𝜃) cos𝑑−1(2𝜃)

∑︁
{𝑘,𝑙}∈𝐸

|Tr (ℎ𝑘𝑙𝑋𝑘𝑋𝑙) |

Since there is nothing special about the 𝑋-basis we can again use our freedom to randomize the
local basis of each qubit to get

E (⟨𝜓|𝐻|𝜓⟩) ≥ 1

4
Tr(𝐻) +

1

36
sin(2𝜃) cos𝑑−1(2𝜃)

∑︁
{𝑘,𝑙}∈𝐸

∑︁
𝑄,𝑅∈{𝑋,𝑌,𝑍}

|Tr (ℎ𝑘𝑙𝑄𝑘𝑅𝑙) |

≥ 1

4
Tr(𝐻) +

1

36
sin(2𝜃) cos𝑑−1(2𝜃)

∑︁
{𝑘,𝑙}∈𝐸

∑︁
𝑄,𝑅∈{𝑋,𝑌,𝑍}

|Tr (ℎ𝑘𝑙𝑄𝑘𝑅𝑙) |2/4

=
1

4
Tr(𝐻) + sin(2𝜃) cos𝑑−1(2𝜃)

quad(𝐻)

36
, (6.47)

where in the second-to-last line we used the fact that |Tr (ℎ𝑘𝑙𝑄𝑘𝑅𝑙) | ≤ 4 which follows from ‖ℎ𝑘𝑙‖ ≤
1. Finally, we can find the maximum value of the second term with respect to 𝜃 by noting that
sin(2𝜃) cos𝑑−1(2𝜃) reaches a maximum when 𝜃 = arcsin( 1√

𝑑
). Using this fact we get

E(⟨𝜓|𝐻|𝜓⟩) ≥ 1

4
Tr(𝐻) + Ω

(︂
quad(𝐻)√

𝑑

)︂
. (6.48)

⊓⊔

6.3.4 Improvement of bounded-depth entangled states: proof of Theorem 173

We prove Theorem 173. Given the 𝑑-regular graph 𝐺 = (𝑉,𝐸), we consider the state |𝑣⟩ =𝑊 |0⟩𝑛,
where 𝑊 has a maximum lightcone of size ℓ. The aim is to increase the energy of |𝑣⟩ with respect
to 𝐻. The light cones of the edges have sizes at most 2ℓ. Define

𝐹 =

𝑛∑︁
𝑗=1

𝑊 |1⟩⟨1|𝑗𝑊 †. (6.49)

The locality of 𝐹 is ℓ. Let 𝐴 = 𝑖[𝐻,𝐹 ] and define |𝜓⟩ = 𝑒𝑖𝐴𝜃|𝑣⟩ (thus 𝑈 = 𝑒𝑖𝐴𝜃 in the statement of
Theorem 173). We can write

𝐴 =
∑︁
𝑒∈𝐸

𝑖[ℎ𝑒, 𝐹 ] :=
∑︁
𝑒∈𝐸

𝐴𝑒, (6.50)
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where

𝐴𝑒 = 𝑖
𝑛∑︁
𝑗=1

[ℎ𝑒,𝑊 |1⟩⟨1|𝑗𝑊 †] = 𝑖
∑︁

𝑗:supp(ℎ𝑒)∩supp(𝑊 |1⟩⟨1|𝑗𝑊 † )̸=𝜑

[ℎ𝑒,𝑊 |1⟩⟨1|𝑗𝑊 †]. (6.51)

Any 𝑗 satisfying supp(ℎ𝑒) ∩ supp(𝑊 |1⟩⟨1|𝑗𝑊 †) ̸= 𝜑 is in the light cone of ℎ𝑒. Thus there are ≤ 2ℓ
such 𝑗’s. For any such 𝑗, 𝑊 |1⟩⟨1|𝑗𝑊 † has locality ℓ. Thus, 𝐴𝑒 is supported on ≤ 2ℓ2 qubits.
Further,

‖𝐴𝑒‖ ≤ 2ℓ · max
𝑗:supp(ℎ𝑒)⊂supp(𝑊 |1⟩⟨1|𝑗𝑊 †)

‖[ℎ𝑒,𝑊 |1⟩⟨1|𝑗𝑊 †]‖ ≤ 2ℓ,

where we used

‖[ℎ𝑒,𝑊 |1⟩⟨1|𝑗𝑊 †]‖ = ‖[ℎ𝑒,𝑊 |1⟩⟨1|𝑗𝑊 † − id/2]‖ ≤ 2‖ℎ𝑒‖‖𝑊 |1⟩⟨1|𝑗𝑊 † − 𝐼/2‖ ≤ 1.

We have

⟨𝜓|𝐻|𝜓⟩ = ⟨𝑣|𝐻|𝑣⟩ − 𝑖⟨𝑣|[𝐴,𝐻]|𝑣⟩𝜃 +
∞∑︁
𝑚=2

(−𝑖𝜃)𝑚
𝑚!

⟨𝑣|[𝐴,𝐻]𝑚|𝑣⟩, (6.52)

Now, using the identities 𝐹 |𝑣⟩ = 0 and 𝐹 ≥ I− |𝑣⟩⟨𝑣|, we find

− 𝑖⟨𝑣|[𝐴,𝐻]|𝑣⟩𝜃 = ⟨𝑣|[[𝐻,𝐹 ], 𝐻]|𝑣⟩𝜃 = 2⟨𝑣|𝐻𝐹𝐻|𝑣⟩𝜃 ≥ 2𝜃⟨𝑣|𝐻(I− |𝑣⟩⟨𝑣|)𝐻|𝑣⟩ = 2𝜃Var(𝐻).
(6.53)

Thus, let us focus on the terms with 𝑚 ≥ 2. We upper bound

⟨𝑣|[𝐴,𝐻]𝑚|𝑣⟩ ≤
∑︁
𝑒∈𝐸

‖[𝐴, ℎ𝑒]𝑚‖ ≤ |𝐸|max
𝑒

‖[𝐴, ℎ𝑒]𝑚‖. (6.54)

Now, consider for each 𝑒,

[𝐴, ℎ𝑒]𝑚 =
∑︁

𝑒1,...𝑒𝑚

[𝐴𝑒𝑚 , [𝐴𝑒𝑚−1 . . . [𝐴𝑒1 , ℎ𝑒]]], (6.55)

where we used Eq. 6.50. Most terms are zero and we will bound the number of non-zero terms. We
will use the following simple fact.

Fact 180. Let 𝑆 ⊂ 𝑉 . The number of 𝑒 such that the support of 𝐴𝑒 overlaps with 𝑆 is at most
|𝑆|ℓ2𝑑. For each such 𝑒 and any operator 𝑂𝑆 on 𝑆 , the support of [𝑂𝑆 , 𝐴𝑒] is at most |𝑆|+ 2ℓ2.

Proof. Since 𝑒 is such that the support of 𝐴𝑒 overlaps with 𝑆, there exist a 𝑗 satisfying supp(ℎ𝑒) ∩
supp(𝑊 |1⟩⟨1|𝑗𝑊 †) ̸= 𝜑 for which the support of [ℎ𝑒,𝑊 |1⟩⟨1|𝑗𝑊 †] overlaps with 𝑆. Thus, either
supp(ℎ𝑒)∩𝑆 ̸= 𝜑 or 𝑗 belongs to the light cone of 𝑆. Since the support of ℎ𝑒 overlaps with the light
cone of 𝑗 in the latter case, we have that the support of ℎ𝑒 overlaps with the light cone of the light
cone of 𝑆 (in both the cases). To upper bound the number of possible 𝑒, we hence we count the size
of the light cone of the light cone of 𝑆 (≤ |𝑆|ℓ2) and then count the number of edges intersecting
with this light cone (≤ 𝑑|𝑆|ℓ2). For any such 𝑒, the support of [𝑂𝑆 , 𝐴𝑒] is contained in the union of
𝑆 and the support of 𝐴𝑒. This completes the proof. ⊓⊔

Using Fact 180, let us estimate the number of (𝑒1, 𝑒2, . . . 𝑒𝑚) that contribute to Eq. 6.55.
Setting 𝑆 to be the set of two vertices of 𝑒, we find that the number of 𝑒1 is at most 2𝑑ℓ2. Arguing
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inductively, suppose we have fixed 𝑒1, 𝑒2, . . . 𝑒𝑘−1. The support size of [𝐴𝑒𝑘−1
, [𝐴𝑒𝑚−1 . . . [𝐴𝑒1 , ℎ𝑒]]]

is at most 2+ 2(𝑘− 1)ℓ2 (by Fact 180). Thus, the number of 𝑒𝑘 contributing to Eq. 6.55 is at most
(2 + 2(𝑘 − 1)ℓ2)ℓ2𝑑. Hence, the total number of (𝑒1, . . . 𝑒𝑚) is at most

(2𝑑ℓ2)·(2+2ℓ2)ℓ2𝑑·(2+4ℓ2)ℓ2𝑑 . . . (2+2(𝑚−1)ℓ2)ℓ2𝑑 ≤ 2𝑚·(𝑚−1)!·ℓ2𝑚−2·(2𝑑ℓ2)𝑚 ≤ (𝑚−1)!(4𝑑ℓ4)𝑚.

Thus,

‖[𝐴, ℎ𝑒]𝑚‖∞ ≤ (𝑚− 1)!(4𝑑ℓ4)𝑚 max
𝑒1,...𝑒𝑚

‖[𝐴𝑒𝑚 , [𝐴𝑒𝑚−1 . . . [𝐴𝑒1 , ℎ𝑒]]]‖

≤ (𝑚− 1)!(4𝑑ℓ4)𝑚 · 2𝑚‖ℎ𝑒‖ · max
𝑒1,...𝑒𝑚

‖𝐴𝑒1‖ · ‖𝐴𝑒2‖ . . . · ‖𝐴𝑒𝑚‖
(𝑎)

≤ (𝑚− 1)!(4𝑑ℓ4)𝑚 · 2𝑚 · (2ℓ)𝑚 = (𝑚− 1)! · (16𝑑ℓ5)𝑚, (6.56)

where (𝑎) uses ‖𝐴𝑒‖ ≤ 2ℓ. Combining with Eq. 6.54, this ensures that

∞∑︁
𝑚=2

⃒⃒⃒⃒
(𝑖𝜃)𝑚

𝑚!
⟨𝑣|[[𝐻,𝐴]]𝑚|𝑣⟩

⃒⃒⃒⃒
≤ |𝐸|

∞∑︁
𝑚=2

𝜃𝑚

𝑚!
(𝑚− 1)! · (16𝑑ℓ5)𝑚

≤ |𝐸| ·
∞∑︁
𝑚=2

(16𝑑ℓ5𝜃)𝑚

≤ 2|𝐸| · (16𝑑ℓ5𝜃)2, (6.57)

where the last inequality assumes 𝜃 ≤ 1
32𝑑ℓ5

(our choice below will satisfy this). Thus, using Eq.
6.52 and Eq. 6.53,

⟨𝜃|𝐻|𝜃⟩ ≥ ⟨𝑣|𝐻|𝑣⟩+ 2𝜃Var(𝐻)− 2|𝐸| · (16𝑑ℓ5𝜃)2

= ⟨𝑣|𝐻|𝑣⟩+ 2𝜃|𝐸|
(︂
Var(𝐻)

|𝐸| − 2(16𝑑ℓ5)2𝜃

)︂
. (6.58)

Setting 𝜃 = Var(𝐻)
210𝑑2ℓ10|𝐸| ≤ 1

32𝑑ℓ5
, we conclude that

⟨𝜓|𝐻|𝜓⟩ ≥ ⟨𝑣|𝐻|𝑣⟩+ Var(𝐻)2

210𝑑2ℓ10|𝐸| . (6.59)

We highlight that the above proof can be applied with minor modifications to the more general
case in which 𝐹 is a ℓ-local Hamiltonian with the unique ground state |𝑣⟩ and constant spectral gap
𝛾 = Ω(1). In this case, we set the ground energy of 𝐹 at 0, leading to the relations 𝐹 |𝑣⟩ = 0 and
𝐹 ⪰ 𝛾 (id− |𝑣⟩⟨𝑣|). Thus, the first order contribution in (6.53) is replaced by

−𝑖⟨𝑣|[𝐴,𝐻]|𝑣⟩𝜃 ≥ 2𝛾𝜃Var(𝐻).

The higher order contributions are upper bounded in a manner similar to above.
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6.3.5 Improvement for general 𝑘-local Hamiltonians

Let 𝐺 = (𝑉,𝐸) be a hypergraph with hyperedges of size at most 𝑘 and 𝑛 = |𝑉 | qubits on its vertices.
We denote the number of hyperedges that contain 𝑖 ∈ 𝑉 by deg(𝑖) and assume deg(𝑖) ≤ 𝑑 for all
𝑖 ∈ 𝑉 . Consider a 𝑘-local Hamiltonian 𝐻 =

∑︀
𝑅∈𝐸 ℎ𝑅 where each local term ℎ𝑅 acts non-trivially

on a subset 𝑅 ∈ 𝐸 of qubits with |𝑅| ≤ 𝑘 and ||ℎ𝑅|| ≤ 1. Here without loss of generality we assume
the input product states is |𝑣⟩ = |0𝑛⟩. We use a similar argument as in the proof of Theorem 170
to relate the improvement after applying an extension of the quantum circuit 𝑉 (𝜃) in Eq. (6.4) to
the variance Var(𝐻). To this end, we write

Var(𝐻) =

𝑘∑︁
𝑡=1

⟨0𝑛|𝐻𝑄𝑡𝐻|0𝑛⟩

where 𝑄𝑡 are the projector onto the computational basis states with Hamming weight 𝑡. Note that
operators 𝑄𝑡 with Hamming weight > 𝑘 do not contribute. It holds that there exists a 𝑡 such that

⟨0𝑛|𝐻𝑄𝑡𝐻|0𝑛⟩ ≥ 1

𝑘
Var(𝐻).

Depending on 𝑡, our choice of circuit 𝑉 (𝜃) is a generalization of what we had before in Theo-
rem 170. The set 𝑆 contains all the collection of 𝑡 different vertices {𝑗1, 𝑗2, . . . , 𝑗𝑡} which fully reside
in the support of at least one local term ℎ𝑅 of the Hamiltonian 𝐻. That is, there exists an 𝑅 such
that {𝑗1, 𝑗2, . . . , 𝑗𝑡} ⊆ supp(ℎ𝑅). Define 𝑉 (𝜃) = 𝑒−𝑖𝜃𝐿 where

𝐿 =
∑︁

{𝑗1,𝑗2,...,𝑗𝑡}∈𝑆

(−1)𝑎𝑗1,...,𝑗𝑡𝑃𝑗1𝑃𝑗2 . . . 𝑃𝑗𝑡 .

Here each 𝑃𝑗 is a single-qubit Pauli operator with the property ⟨0|𝑃𝑗 |0⟩ = 0 that acts nontrivially
only on qubit 𝑗 and 𝑎𝑗1,...,𝑗𝑡 ∈ {0, 1} is chosen so that

𝑖⟨0𝑛|(−1)𝑎𝑗1,...,𝑗𝑡 [𝑃𝑗1𝑃𝑗2 . . . 𝑃𝑗𝑡 , 𝐻]|0𝑛⟩ = |⟨0𝑛|[𝑃𝑗1𝑃𝑗2 . . . 𝑃𝑗𝑡 , 𝐻]|0𝑛⟩|.

Let |𝜃⟩ = 𝑒−𝑖𝜃𝐿|0𝑛⟩. Then

⟨𝜃|𝐻|𝜃⟩ = ⟨0𝑛|𝐻|0𝑛⟩+ 𝜃
∑︁

{𝑗1,...,𝑗𝑡}∈𝑆

|⟨0𝑛|[𝑃𝑗1𝑃𝑖2 . . . 𝑃𝑗𝑡 , 𝐻]|0𝑛⟩|+ Err,

where the higher order terms Err can be bounded as

|Err| =

⃒⃒⃒⃒
⃒⃒∑︁
𝑚≥2

𝑖𝑚𝜃𝑚

𝑚!
⟨0𝑛|[𝐿,𝐻]𝑚|0𝑛⟩

⃒⃒⃒⃒
⃒⃒

≤ |𝐸|
∑︁
𝑚≥2

𝜃𝑚

𝑚!

(︂
2𝑘𝑑

(︂
𝑘

𝑡− 1

)︂)︂𝑚
≤
(︂
2𝑘𝑑

(︂
𝑘

𝑡− 1

)︂)︂2

𝜃2|𝐸|𝑒2𝑘𝑑(
𝑘

𝑡−1)𝜃. (6.60)

219



In the second line, we used the fact that [𝐿,𝐻]𝑚 =
∑︀

𝑅[𝐿, ℎ𝑅]𝑚 and each term [𝐿, ℎ𝑅] can be
expanded as a sum of at most

(︁
𝑘𝑑
(︀
𝑘
𝑡−1

)︀)︁𝑚
non-zero terms each of norm at most 2𝑚. This is because

the operators 𝑃𝑗1 , 𝑃𝑗2 , . . . , 𝑃𝑗𝑡 commute with each other for different choices of {𝑗1, 𝑗2, . . . , 𝑗𝑡} and
only those that overlap with the support of ℎ𝑅 may contribute. The number of such operators (i.e.
|𝑆∩supp(ℎ𝑅)|) can be bounded by 𝑘𝑑

(︀
𝑘
𝑡−1

)︀
as follows: There are at most 𝑘 vertices in supp(ℎ𝑅) and

each vertex is in the support of ≤ 𝑑 other terms in the Hamiltonian. Given a vertex 𝑗 ∈ supp(ℎ𝑅)
and an overlapping Hamiltonian term ℎ𝑅′ such that 𝑗 ∈ supp(ℎ𝑅′), there are

(︀
𝑘
𝑡−1

)︀
choices of

vertices {𝑗1, 𝑗2, . . . , 𝑗𝑡} ⊆ supp(ℎ𝑅′) that contain 𝑗. Hence, from the definition of set 𝑆 follows that
|𝑆 ∩ supp(ℎ𝑅)| ≤ 𝑘𝑑

(︀
𝑘
𝑡−1

)︀
(one can obtain tighter bounds using ⟨0|𝑃𝑗 |0⟩ = 0). Now define

𝛽 =
1

|𝐸|
∑︁

{𝑗1,...,𝑗𝑡}∈𝑆

|⟨0𝑛|[𝑃𝑗1𝑃𝑗2 . . . 𝑃𝑗𝑡 , 𝐻]|0𝑛⟩|. (6.61)

It holds that 𝛽 ≤ 2
(︀
𝑘
𝑡

)︀
. To see this, note that |⟨0𝑛|[𝑃𝑗1𝑃𝑗2 . . . 𝑃𝑗𝑡 , 𝐻]|0𝑛⟩| ≤∑︀

𝑅 |⟨0𝑛|[𝑃𝑗1𝑃𝑗2 . . . 𝑃𝑗𝑡 , ℎ𝑅]|0𝑛⟩|. Using the assumption ⟨0|𝑃𝑗 |0⟩ = 0, it follows that the only
choices of vertices {𝑗1, . . . , 𝑗𝑡} that may contribute in |⟨0𝑛|[𝑃𝑗1𝑃𝑗2 . . . 𝑃𝑗𝑡 , ℎ𝑅]|0𝑛⟩| are those which
are fully contained in supp(ℎ𝑅). The number of such vertices is bounded by

(︀
𝑘
𝑡

)︀
. Using

|⟨0𝑛|[𝑃𝑗1𝑃𝑗2 . . . 𝑃𝑗𝑡 , ℎ𝑅]|0𝑛⟩| ≤ 2, we arrive at the claimed bound 𝛽 ≤ 2
(︀
𝑘
𝑡

)︀
. We have

⟨𝜃|𝐻|𝜃⟩ = ⟨0𝑛|𝐻|0𝑛⟩+ |𝐸|
(︃
𝜃𝛽 −

(︂
2𝑘𝑑

(︂
𝑘

𝑡− 1

)︂)︂2

𝜃2𝑒2𝑘𝑑(
𝑘

𝑡−1)𝜃
)︃
.

Choosing 𝜃 = 𝑂

(︂
𝛽

𝑘2𝑑2( 𝑘
𝑡−1)

2

)︂
gives

⟨𝜃|𝐻|𝜃⟩ ≥ 0𝑛|𝐻|0𝑛⟩+Ω

⎛⎝ |𝐸|𝛽2

𝑘2𝑑2
(︀
𝑘
𝑡−1

)︀2
⎞⎠ . (6.62)

Now let 𝛽1 be given by Eq. (6.61) with 𝑃𝑗1𝑃𝑗2 . . . 𝑃𝑗𝑡 = 𝑋𝑗1 ⊗𝑋𝑗2 ⊗· · ·⊗𝑋𝑗𝑡 for all {𝑗1, . . . , 𝑗𝑡} ∈ 𝑆.
Define |𝑒𝑗1,...,𝑗𝑡⟩ = 𝑋𝑗1 ⊗𝑋𝑗2 ⊗ · · · ⊗𝑋𝑗𝑡 |0𝑛⟩ and the operator

𝑝 =

(︂
0 𝑒−𝑖

𝜋
2𝑡

𝑒𝑖
𝜋
2𝑡 0

)︂
.

Let 𝛽2 be given by Eq. (6.61) with 𝑃𝑗1𝑃𝑗2 . . . 𝑃𝑗𝑡 = 𝑝𝑗1 ⊗𝑝𝑗2 ⊗· · ·⊗𝑝𝑗𝑡 for all {𝑗1, . . . , 𝑗𝑡} ∈ 𝑆. Then,
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one can see that

𝛽1 + 𝛽2
2

=
1

|𝐸|
∑︁

{𝑗1,...,𝑗𝑡}∈𝑆

|Im(⟨𝑒𝑗1,...,𝑗𝑡 |𝐻|0𝑛⟩)|+ |Re(⟨𝑒𝑗1,...,𝑗𝑡 |𝐻|0𝑛⟩)|

≥ 1

|𝐸|
∑︁

{𝑗1,...,𝑗𝑡}∈𝑆

𝑑 ·
(︃
|Im(⟨𝑒𝑗1,...,𝑗𝑡 |𝐻|0𝑛⟩)|2

𝑑2
+

|Re(⟨𝑒𝑗1,...,𝑗𝑡 |𝐻|0𝑛⟩)|2
𝑑2

)︃

=
1

𝑑|𝐸| |⟨0
𝑛|𝐻𝑄𝑡𝐻|0𝑛⟩|

≥ 1

𝑘𝑑|𝐸|Var(𝐻).

This implies either 𝛽1 or 𝛽2 is larger than 1
𝑘𝑑|𝐸|Var(𝐻). By plugging this into Eq. (6.62) we arrive

at

⟨𝜃|𝐻|𝜃⟩ ≥ ⟨0𝑛|𝐻|0𝑛⟩+Ω

⎛⎝ Var(𝐻)2

𝑘4𝑑4
(︀
𝑘
𝑡−1

)︀2|𝐸|

⎞⎠ .

This bound is minimized by allowing 𝑡 = ⌈𝑘/2 + 1⌉ which results in the following overall lower
bound on the improvement to the energy of the input state |0𝑛⟩:

⟨𝜃|𝐻|𝜃⟩ ≥ ⟨0𝑛|𝐻|0𝑛⟩+Ω

(︂
Var(𝐻)2

2𝑂(𝑘)𝑑4|𝐸|

)︂
. (6.63)

We note that the Ω(1/𝑑4) dependence of (6.63) on the degree is quadratically worse than the bound
we obtained for 2-local Hamiltonians in Theorem 170; It would be interesting to recover the Ω(1/𝑑2)
scaling in this case.

6.3.6 Local classical algorithm for triangle-free graphs

Theorem 181. Consider a two-local Hamiltonian 𝐻 =
∑︀

{𝑖,𝑗}∈𝐸 ℎ𝑖𝑗 where 𝐺 = (𝑉,𝐸) is a 𝑑-
regular triangle-free graph. There is an efficient randomized algorithm that computes a product state
|𝑣⟩ = ⊗𝑛

𝑖=1|𝑣𝑖⟩ satisfying

E𝑣⟨𝑣|𝐻|𝑣⟩ ≥ 1

4
Tr(𝐻) + Ω

(︂
quad(𝐻)√

𝑑

)︂
. (6.64)

Note that in Eq. (6.64) the first term on the right hand side is equal to the expected energy of
𝐻 with respect to a random state 𝜌 = 𝐼/2𝑛.

Proof of Theorem 181. It will be convenient to work in a local Pauli basis 𝑋,𝑌 or 𝑍 chosen at
random and independently for each qubit. We write ℎ𝑖𝑗 in this randomly chosen product basis. Let
us define 𝑤𝑖𝑗 = Tr(ℎ𝑖𝑗)/4 and

𝑢𝑥𝑖𝑗 =
1

4
Tr(ℎ𝑖𝑗𝑋𝑖𝑋𝑗) 𝑢𝑦𝑖𝑗 =

1

4
Tr(ℎ𝑖𝑗𝑌𝑖𝑌𝑗) 𝑢𝑧𝑖𝑗 =

1

4
Tr(ℎ𝑖𝑗𝑍𝑖𝑍𝑗).
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Due to the random choice of basis we have

E[(𝑢𝑎𝑖𝑗)2] =
1

9
quad(ℎ𝑖𝑗) 𝑎 ∈ {𝑥, 𝑦, 𝑧}. (6.65)

Following [BMO+15, Has19, HM17], we start with a random i.i.d assignment of pure product
|𝑣⟩ = ⊗𝑛

𝑖=1|𝑣𝑖⟩ states to the vertices. We then select a subset of vertices 𝐴 uniformly at random.
For any vertex 𝑖 ∈ 𝐴, let 𝑁(𝑖) = {{𝑖, 𝑗} ∈ 𝐸 : 𝑗 /∈ 𝐴} be the neighboring edges that contain exactly
one vertex in 𝐴 (i.e. vertex 𝑖). The remaining edges that are not in ∪𝑖∈𝐴𝑁(𝑖) either connect two
vertices that are not in 𝐴 or connect two vertices in 𝐴. We denote the former by 𝑀 and the latter
by 𝑀 ′.

The initial random pure state at each vertex 𝜌𝑖 can be represented by 𝜌𝑖 = 1
2(1+ 𝑟𝑥𝑖𝑋𝑖+ 𝑟𝑦𝑖 𝑌𝑖+

𝑟𝑧𝑖𝑍𝑖), where (𝑟𝑥𝑖 , 𝑟
𝑦
𝑖 , 𝑟

𝑧
𝑖 ) ∈ R3 is the Bloch vector with norm |𝑟𝑥𝑖 |2 + |𝑟𝑦𝑖 |2 + |𝑟𝑧𝑖 |2 = 1. For a vertex

𝑖 ∈ 𝐴, the total energy of the edges 𝑁(𝑖) is given by∑︁
𝑗:{𝑖,𝑗}∈𝑁(𝑖)

tr[ℎ𝑖𝑗𝜌𝑖 ⊗ 𝜌𝑗 ]

=
∑︁

𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝑤𝑖𝑗 +
∑︁

𝑗:{𝑖,𝑗}∈𝑁(𝑖)

(𝑢𝑥𝑖𝑗𝑟
𝑥
𝑖 𝑟
𝑥
𝑗 + 𝑢𝑦𝑖𝑗𝑟

𝑦
𝑖 𝑟
𝑦
𝑗 + 𝑢𝑧𝑖𝑗𝑟

𝑧
𝑖 𝑟
𝑧
𝑗 ) +

∑︁
𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝐷𝑖𝑗(𝑟⃗𝑖, 𝑟⃗𝑗) (6.66)

where
𝐷𝑖𝑗(𝑟⃗𝑖, 𝑟⃗𝑗) =

∑︁
𝑎̸=𝑏

𝑐𝑎𝑏𝑖𝑗 𝑟
𝑎
𝑖 𝑟
𝑏
𝑗 +

∑︁
𝑎∈{𝑥,𝑦,𝑧}

(𝑑𝑎𝑖𝑗𝑟
𝑎
𝑖 + 𝑒𝑎𝑖𝑗𝑟

𝑎
𝑗 ).

for some coefficients 𝑐𝑎𝑏𝑖𝑗 , 𝑑
𝑎
𝑖𝑗 , 𝑒

𝑎
𝑖𝑗 . Using Cauchy–Schwarz inequality, we see that the first two terms

in Eq. (6.66) can be maximized by applying a local unitary on each vertex 𝑖 ∈ 𝐴 which rotates the
state 𝜌𝑖 to a state 𝜌𝑖 with the Bloch vector

𝑅𝑎𝑖 = (
∑︁

𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝑢𝑎𝑖𝑗𝑟
𝑎
𝑗 )

(︂
(

∑︁
𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝑢𝑥𝑖𝑗𝑟
𝑥
𝑗 )

2 + (
∑︁

𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝑢𝑦𝑖𝑗𝑟
𝑦
𝑗 )

2 + (
∑︁

𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝑢𝑧𝑖𝑗𝑟
𝑧
𝑗 )

2

)︂−1/2

(6.67)

for 𝑎 ∈ {𝑥, 𝑦, 𝑧}. When the denominator of Eq. (6.67) is zero, the vector 𝑅⃗ is chosen uniformly at
random. Hence, we get∑︁

𝑗:{𝑖,𝑗}∈𝑁(𝑖)

tr[ℎ𝑖𝑗𝜌𝑖 ⊗ 𝜌𝑗 ]

=
∑︁

{𝑖,𝑗}∈𝑁(𝑖)

𝑤𝑖𝑗 +

(︂
(

∑︁
𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝑢𝑥𝑖𝑗𝑟
𝑥
𝑗 )

2 + (
∑︁

𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝑢𝑦𝑖𝑗𝑟
𝑦
𝑗 )

2 + (
∑︁

𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝑢𝑧𝑖𝑗𝑟
𝑧
𝑗 )

2

)︂1/2

(6.68)

+
∑︁

𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝐷𝑖𝑗(𝑅⃗𝑖, 𝑟⃗𝑗),

A property of this construction is that E[𝑅𝑎𝑖 ] = 0 for 𝑎 ∈ {𝑥, 𝑦, 𝑧} and 𝑅𝑖, 𝑅𝑗 are independent of
each other for {𝑖, 𝑗} ∈ 𝑀 ′. This follows from the triangle-freeness, the definition of the set 𝑁(𝑖),
and the initial uniform i.i.d. distribution of the state of vertices. Moreover, we have

E[𝑟𝑎𝑗 𝑟𝑏𝑘] = E[𝑅𝑎𝑗 𝑟𝑏𝑘] = 0 whenever 𝑎 ̸= 𝑏 .
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Using these observations, the expected value of the total energy after the local improvements is

E

⎡⎣ ∑︁
{𝑖,𝑗}∈𝑀 ′

tr[ℎ𝑖𝑗𝜌𝑖 ⊗ 𝜌𝑗 ]

⎤⎦+ E

⎡⎣ ∑︁
{𝑖,𝑗}∈𝑀

tr[ℎ𝑖𝑗𝜌𝑖 ⊗ 𝜌𝑗 ]

⎤⎦+ E

⎡⎣∑︁
𝑖∈𝐴

∑︁
𝑗:{𝑖,𝑗}∈𝑁(𝑖)

tr[ℎ𝑖𝑗𝜌𝑖 ⊗ 𝜌𝑗 ]

⎤⎦
=

∑︁
{𝑖,𝑗}∈𝐸

𝑤𝑖𝑗 + E

⎡⎣∑︁
𝑖∈𝐴

(︂
(

∑︁
𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝑢𝑥𝑖𝑗𝑟
𝑥
𝑗 )

2 + (
∑︁

𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝑢𝑦𝑖𝑗𝑟
𝑦
𝑗 )

2 + (
∑︁

𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝑢𝑧𝑖𝑗𝑟
𝑧
𝑗 )

2

)︂1/2
⎤⎦

≥
∑︁

{𝑖,𝑗}∈𝐸

𝑤𝑖𝑗 + E

⎡⎣∑︁
𝑖∈𝐴

|
∑︁

𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝑢𝑧𝑖𝑗𝑟
𝑧
𝑗 |

⎤⎦ (6.69)

The first term
∑︀

{𝑖,𝑗}∈𝐸 𝑤𝑖𝑗 corresponds to the expected energy when the product states are chosen
uniformly at random. The second term is a lower bound on the improvement achieved by the local
updates which we now show is at least Ω(|𝐸|/

√
𝑑).

For a fixed choice of the set 𝐴 ⊆ 𝑉 , we define the random variable 𝜉𝑖 =
∑︀

𝑗:{𝑖,𝑗}∈𝑁(𝑖) 𝑢
𝑧
𝑖𝑗𝑟

𝑧
𝑗 . Using

the “second moment method,” for 𝑡 ∈ [0, 1], we get

Pr
[︁
|𝜉𝑖| ≥ 𝑡

√︀
E[𝜉2]

]︁
≥ (1− 𝑡2)2

E[𝜉2]2

E[𝜉4]
(6.70)

One way to sample uniform pure states over Bloch sphere is to uniformly draw 𝜑 ∼ [0, 2𝜋], 𝑟𝑧𝑗 ∼
[−1, 1] and set 𝑟𝑥𝑗 =

√︁
1− (𝑟𝑧𝑗 )

2 cos𝜑 and 𝑟𝑦𝑗 =
√︁

1− (𝑟𝑧𝑗 )
2 sin𝜑. Given this we have E[𝑟𝑧𝑗 ] = 0,

E[(𝑟𝑧𝑗 )2] = 1/3, E[(𝑟𝑧𝑗 )3] = 0, and E[(𝑟𝑧𝑗 )4] = 1/5. Hence, using Corollary 9.6 of [O’D14], we have
E[𝜉4] ≤ 9 ·E[𝜉2]2. Plugging this in (6.70) implies that for a fixed choice of the set 𝐴, the expectation
with respect to the random distribution of the initial product states for an arbitrary choice of
𝑡 ∈ [0, 1] is

E

⎡⎣| ∑︁
𝑗:{𝑖,𝑗}∈𝑁(𝑖)

𝑢𝑧𝑖𝑗𝑟
𝑧
𝑗 |

⎤⎦ ≥ 1

9
· 𝑡(1− 𝑡2)2 · E[𝜉2]1/2

=
1

9
· 𝑡(1− 𝑡2)2 ·

⎛⎝ ∑︁
𝑗:{𝑖,𝑗}∈𝑁(𝑖)

(𝑢𝑧𝑖𝑗)
2E
[︀
(𝑟𝑧𝑗 )

2
]︀⎞⎠1/2

≥ 1

9
√
3
· 𝑡(1− 𝑡2)2 ·

⎛⎝ ∑︁
𝑗:{𝑖,𝑗}∈𝑁(𝑖)

(𝑢𝑧𝑖𝑗)
2

⎞⎠1/2

. (6.71)

Finally, we calculate the expectation with respect to the set 𝐴 ⊆ 𝑉 . Note that the set 𝑁(𝑖) is also
a random variable determined by the set 𝐴. Conditioned on the event that the vertex 𝑖 ∈ 𝐴 and
using Theorem 9.24 of [O’D14], we have

Pr

⎡⎣ ∑︁
𝑗:{𝑖,𝑗}∈𝑁(𝑖)

(𝑢𝑧𝑖𝑗)
2 ≥ 1

2

∑︁
𝑗:{𝑖,𝑗}∈𝐸

(𝑢𝑧𝑖𝑗)
2

⎤⎦ ≥ 1

4𝑒2
.
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Thus, we get

E

⎡⎢⎣∑︁
𝑖∈𝐴

⎛⎝ ∑︁
𝑗:{𝑖,𝑗}∈𝑁(𝑖)

(𝑢𝑧𝑖𝑗)
2

⎞⎠1/2
⎤⎥⎦ ≥ 1

8
√
2𝑒2

∑︁
𝑖∈𝑉

⎛⎝ ∑︁
𝑗:{𝑖,𝑗}∈𝐸

(𝑢𝑧𝑖𝑗)
2

⎞⎠1/2

≥ 1

4
√
2𝑒2

· 1√
𝑑

∑︁
{𝑖,𝑗}∈𝐸

(𝑢𝑧𝑖𝑗)
2. (6.72)

Finally, taking the expectation over the random choice of local basis and using Eq. (6.65) we get

E

⎡⎢⎣∑︁
𝑖∈𝐴

⎛⎝ ∑︁
𝑗:{𝑖,𝑗}∈𝑁(𝑖)

(𝑢𝑧𝑖𝑗)
2

⎞⎠1/2
⎤⎥⎦ ≥ 1

36
√
2𝑒2

· 1√
𝑑

∑︁
{𝑖,𝑗}∈𝐸

quad(ℎ𝑖𝑗)

≥ 1

36
√
2𝑒2

· 1√
𝑑
quad(𝐻) (6.73)

We arrive at (6.64) by plugging this into (6.71) and using (6.69).
⊓⊔
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