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Problem Statement and Background
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Degree-d interaction graph:
Each qubit is involved in < d interactions

Ground state of H captures the low-temperature physics

Believed to generally require exp(n) resources to compute



1 Worst-Case Complexity and
Rigorous Algorithms

2 Heuristic Quantum Algorithms



Worst-Case Complexity

= Ground state energy = A,,,;,(H) := miny, (Y|H|y)

1
poly(n)
[Kitaev’99, Kempe-Kitaev-Regev’'04]

= QMA-hard to estimate 4,,;,(H) with additive error

= PCP Theorem: For some constant 0 < e < 1,

remains|NP-hard|to estimate 1,,;, within additive error ¢ - m
[Arora-Lund-Motwani-Sudan-Szegedy’98,

QMA-hard? gPCP conjecture Arora-Safra’98, Dinur’07]




Worst-Case Complexity

What is the best approximation of 1,,;,(H)
achievable with efficient algorithms?

Known rigorous algorithms e.g. for

= Heisenberg-like interactions: h;; =1 — X;X; - Y;Y; — Z,Z;
[Gharibian-Parekh’19, Anshu-Gosset-Morenz Korol’20]
= Positive semidefinite: h;; = 0
[Gharibian-Kempe’12]
= Traceless: Tr[h;;| =0
[Bravyi-Gosset-Konig-Temme'19]
= Dense or planar graphs

[Bansal-Bravyi-Terhal’09, Gharibian-Kempe’12, Brandao-Harrow’14]



Worst-Case Complexity

Most of these algorithms compute a quantum state |v) that
V) = [v1) @ [v2) & - & |vp)
or
|v) = tensor product of few-qubit states
But ground states may be highly entangled,

What is the structure of states
which provide good approximations?



Worst-Case Complexity

What is the structure of states
which provide good approximations?

For high degree graphs,
product states provide good approximations

Monogamy of entanglement
Mean-field approximation

[Brandao, Harrow 2014]
For Hamiltonians on degree-d graphs with n qubits and
m interactions, there exists |v) = |[v{) ® |[v;) ® - X |v,,) s.t.

(WIH|v) < Apin(H) + 0 (-17)

Are there improved approximation algorithms
for 1.,;,(H) using entangled states?



Worst-Case Complexity

What is the structure of states
which provide good approximations?

For high degree graphs,
product states provide good approximations

Monogamy of entanglement
Mean-field approximation

[Brandao, Harrow 2014]
For Hamiltonians on degree-d graphs with n qubits and
m interactions, there exists |v) = |[v{) ® |[v;) ® - X |v,,) s.t.

(WIH|v) < Apin(H) + 0 (-17)

(This work: B
Extensive improvement over product states for
.bounded-degree interactions via low-depth quantum circuits,




1 Worst-Case Complexity and
Rigorous Algorithms

2 Heuristic Quantum Algorithms



Ground states may be highly entangled
So potential advantage in using quantum computers

Some near-term quantum computers can be modeled with
low-depth quantum circuits model

Depth

n qubits {




Ground states may be highly entangled
So potential advantage in using quantum computers

Some near-term quantum computers can be modeled with
low-depth quantum circuits model

Many heuristic algorithms use low-depth quantum circuits

E.g. variational algorithms:

[$(6)) = U(6)|0™)

—_—
(W(0)|H|Y(0)) ming (Y (0)|H|p(0))
Measure with quantum computer Optimize with classical computer
A ——



Ground states may be highly entangled
So potential advantage in using quantum computers

Some near-term quantum computers can be modeled with
low-depth quantum circuits model

Many heuristic algorithms use low-depth quantum circuits

Rigorous bounds on the performance of
low-depth quantum circuits for estimating ground energy?




Many known rigorous algorithms output product states.

How can we improve them by applying quantum circuits?

Many near-term algorithms use low-depth quantum circuits

How can we rigorously bound their performance?



Main Results



Result: Improving product state approx.

Given a product state |v) = |v) ® |v,) ¥ - X |v,)

With variance
Var,(H) = (v|H? |v) — (v|H|v)*

There is a constant-depth quantum circuit U
s.t. |Y) = U|v) satisfies

(WIHIP) < (v]H|v) tant . 2T (D7
1/) 1/’ = \V % constan Zm
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Result: Improving product state approx.

Given a product state |v) = |v) ® |v,) ¥ - X |v,)

With variance
Var,(H) = (v|H? |v) — (v|H|v)*

There is a constant-depth quantum circuit U
s.t. |Y) = U|v) satisfies
Var,(H)?
d*m
= An improvement of Q(m) in estimated energy when
Var,(H) = Q(m) and d = 0(1)

(Y|H|Y) < (v|H|v) — constant -



Result: Improving product state approx.

Given a product state |v) = |v) ® |v,) ¥ - X |v,)
With variance
Var,(H) = (v|H* |v) — (v|H|v)*
There is a constant-depth quantum circuit U
s.t. |Y) = U|v) satisfies
Var,(H)?
d*m
= An improvement of Q(m) in estimated energy when
Var,(H) = Q(m) and d = 0(1)

= No improvement when |v) is eigenstate of Hamiltonian
(e.g. purely classical case)

(Y|H|Y) < (v|H|v) — constant -



Proof Idea of 15t Result



Circuit U for state |v) = |v)) ® |vy) ® - Q |v,)

U(B) = H{i]'}EE eiei]'Pin — ei Z{i,j}EE 0ijPiP;

”Pl” <1, (v,-IP,-lv,-) =0 VievV



Circuit U for state |v) = |v)) ® |vy) ® - Q |v,)

Uo) = I hek ei0ijPiPj — ol Zijick OijPiPj

”Pl” <1, (v,-IPilv,-) =0 VievV

= Generalizes level-1 QAOA P; = eif LievXiZ o~ Xiev Xi

= The circuit can be efficiently found. It has depth=d + 1



Circuit U for state |v) = [v1) Q [v3) Q - R |v,,)
1P|l <1, (v;|P;|lv)) =0 ViIieV

= Slightly rotates each |v;)|v;) towards the ground space:

For some 6, < 0(1/d):
(v|U(00)T hi; U(0y)|v)
< (v|hyj|v) — 8¢ - [(v|[PiP;, hyj][v)| + O(65d)



Improved Bound and Tightness



Result: locally optimal states & tightness

Improved bound:

A product state |v) is locally optimal if for any single-
qubit operator 0,

For locally optimal states,
Var,(H)?

(Y|H|Y) < (v|H|v) — constant - pe




Result: locally optimal states & tightness

Tightness:

For simple Hamiltonians e.g. h;; = Z; + Z; and

[v) = (cos(0) |0) — sin(8)|1))®"
We have
Var,(H)?
d’m

(v|H|v) — A5, < constant -



Generic Performance



Result: Improvement for random states

Write H in terms of Pauli operators ¢4,0,,03, and o, = I:

H =Y jiep Zxy fry 0% ® 0y,
Define

.\ 2
quad(H) = Z{i,j}eE Zx>0,y>0 ( ;CIJ’)

Improvement for random product states

uad(H)?
E,(Y|H|p) < E,(v|H|v) — constant - quad(H)
dm
For triangle-free graphs, we have
quad(H)

E,(Y|H|Y) < E,(v|H|v) — constant 7a



Extensions of our Bounds



Result: k-local Hamiltonians

|

Given a degree-d k-local Hamiltonian H
and a product state |v),

there is a low-depth quantum circuit U s.t. |y) = U|v) satisfies

Var,(H)?
20(6) d4 m

t

(Y|H|Y) < (v|H|v) — constant -




Result: Improving entangled states

Let |[v) = W|0") where W is a quantum circuit of depth D.
We can efficiently compute a quantum circuit U
such that the state |yp) = U|v) satisfies

Var,(H)?
(Y|H|Y) < (v|H|v) — constant - 20Dz m

\£10

= The circuit U is not constant-depth anymore

= The bound extends to when |y) is the unique ground state
of some /-local gapped Hamiltonian



Open Questions



Open questions

Can output of SDP relaxations
be directly rounded to entangled states?
[Parekh-Thompson’20, Anshu-Gosset-Morenz Korol’20]

Can similar strategies derive
limitations on energy of low-depth circuits?

NLTS [Freedman-Hastings’14, Eldar-Harrow’15, Anshu-Nirkhe’21]

Rigorous results on performance of variational algorithms?
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