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Problem Statement and Background
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Interaction	graph	𝑮 = (𝑽, 𝑬)
𝑽 = 𝒏 qubits
𝑬 = 𝒎 local term 𝒉𝒌ℓ

𝒌

ℓ

Local Hamiltonian        𝑯 = ∑ 𝒉𝒌ℓ�
𝒌,ℓ ∈𝑬

𝝀𝟏

Believed to generally require 𝐞𝐱𝐩(𝒏) resources to compute

Ground state

𝝀𝐦𝐚𝐱

Bounded-degree Local Hamiltonians

Degree-𝒅 interaction graph:
Each qubit is involved in ≤ 𝒅 interactions

Ground state of 𝑯 captures the low-temperature physics



Worst-Case Complexity and  
Rigorous Algorithms

1

Heuristic Quantum Algorithms2



§ Ground state energy = 𝝀𝐦𝐢𝐧(𝑯) ∶= 𝐦𝐢𝐧𝝍	 𝝍 𝑯 𝝍

§ QMA-hard to estimate 𝝀𝐦𝐢𝐧 𝐇 with 𝟏
𝐩𝐨𝐥𝐲(𝒏)

additive error

§ PCP Theorem: For some constant 𝟎 < 𝜺 < 𝟏,
remains NP-hard to estimate 𝝀𝐦𝐢𝐧 within additive error 𝜺 ⋅ 𝒎

Worst-Case Complexity

QMA-hard? qPCP conjecture
[Arora-Lund-Motwani-Sudan-Szegedy’98, 

Arora-Safra’98, Dinur’07]

[Kitaev’99, Kempe-Kitaev-Regev’04]



Known rigorous algorithms e.g. for 

§ Heisenberg-like interactions: 𝒉𝒊𝒋 = 𝑰 − 𝑿𝒊𝑿𝒋 − 𝒀𝒊𝒀𝒋 − 𝒁𝒊𝒁𝒋
[Gharibian-Parekh’19, Anshu-Gosset-Morenz Korol’20]

§ Positive semidefinite: 𝒉𝒊𝒋 ≥ 𝟎
[Gharibian-Kempe’12]

§ Traceless: 𝐓𝐫[𝒉𝒊𝒋] = 𝟎
[Bravyi-Gosset-König-Temme'19] 

§ Dense or planar graphs
[Bansal-Bravyi-Terhal’09, Gharibian-Kempe’12, Brandão-Harrow’14] 

What is the best approximation of 𝝀𝐦𝐢𝐧 𝐇
achievable with efficient algorithms?

Worst-Case Complexity



Most of these algorithms compute a quantum state |𝒗⟩ that

𝒗 = 𝒗𝟏 ⊗ 𝒗𝟐 ⊗⋯⊗ |𝒗𝒏⟩

or

𝒗 = tensor product of few-qubit states

But ground states may be highly entangled,  

What is the structure of states 
which provide good approximations?

Worst-Case Complexity



What is the structure of states 
which provide good approximations?

For high degree graphs,
product states provide good approximations

Monogamy of entanglement
Mean-field approximation

[Brandão, Harrow 2014]
For Hamiltonians on degree-𝒅 graphs with 𝒏 qubits and 
𝒎 interactions, there exists 𝒗 = 𝒗𝟏 ⊗ 𝒗𝟐 ⊗⋯⊗ |𝒗𝒏⟩ s.t.

𝒗 𝑯 𝒗 ≤ 𝝀𝐦𝐢𝐧 𝑯 + 𝑶 𝒎
𝒅𝟏/𝟑

Worst-Case Complexity

Are there improved approximation algorithms 
for 𝝀𝐦𝐢𝐧 𝑯 using entangled states?



What is the structure of states 
which provide good approximations?

For high degree graphs,
product states provide good approximations

Monogamy of entanglement
Mean-field approximation

Worst-Case Complexity

[Brandão, Harrow 2014]
For Hamiltonians on degree-𝒅 graphs with 𝒏 qubits and 
𝒎 interactions, there exists 𝒗 = 𝒗𝟏 ⊗ 𝒗𝟐 ⊗⋯⊗ |𝒗𝒏⟩ s.t.

𝒗 𝑯 𝒗 ≤ 𝝀𝐦𝐢𝐧 𝑯 + 𝑶 𝒎
𝒅𝟏/𝟑

This work:
Extensive improvement over product states for
bounded-degree interactions via low-depth quantum circuits



Worst-Case Complexity and  
Rigorous Algorithms

1

Heuristic Quantum Algorithms2



𝒏 qubits

Some near-term quantum computers can be modeled with 
low-depth quantum circuits model 

Ground states may be highly entangled  
So potential advantage in using quantum computers

Depth



Ground states may be highly entangled  
So potential advantage in using quantum computers

Many heuristic algorithms use low-depth quantum circuits

E.g. variational algorithms:

𝝍 𝜽 = 𝑼 𝜽 |𝟎𝒏⟩

⟨𝝍(𝜽)|𝑯 𝝍 𝜽
Measure with quantum computer

𝐦𝐢𝐧𝜽	⟨𝝍(𝜽)|𝑯 𝝍 𝜽
Optimize with classical computer

Some near-term quantum computers can be modeled with 
low-depth quantum circuits model 



Ground states may be highly entangled  
So potential advantage in using quantum computers

Many heuristic algorithms use low-depth quantum circuits

Rigorous bounds on the performance of
low-depth quantum circuits for estimating ground energy?

Some near-term quantum computers can be modeled with 
low-depth quantum circuits model 



Recap

Many known rigorous algorithms output product states.

How can we improve them by applying quantum circuits?

Many near-term algorithms use low-depth quantum circuits

How can we rigorously bound their performance?



Main Results



Given a product state 𝒗 = 𝒗𝟏 ⊗ 𝒗𝟐 ⊗⋯⊗ |𝒗𝒏⟩

With variance 
𝐕𝐚𝐫𝒗 𝑯 = ⟨𝒗|𝑯𝟐	|𝒗⟩ − 𝒗 𝑯 𝒗 𝟐

There is a constant-depth quantum circuit 𝑼
s.t. 𝝍 = 𝑼 𝒗 satisfies 

𝝍 𝑯 𝝍 ≤ 𝒗 𝑯 𝒗 − 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 ⋅
𝐕𝐚𝐫𝒗 𝑯 𝟐

𝒅𝟐	𝒎

Result: Improving product state approx.

𝒏 qubits
𝒎 local terms 𝒉𝒊𝒋
𝒅 neighbors



Given a product state 𝒗 = 𝒗𝟏 ⊗ 𝒗𝟐 ⊗⋯⊗ |𝒗𝒏⟩

With variance 
𝐕𝐚𝐫𝒗 𝑯 = ⟨𝒗|𝑯𝟐	|𝒗⟩ − 𝒗 𝑯 𝒗 𝟐

There is a constant-depth quantum circuit 𝑼
s.t. 𝝍 = 𝑼 𝒗 satisfies 

𝝍 𝑯 𝝍 ≤ 𝒗 𝑯 𝒗 − 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 ⋅
𝐕𝐚𝐫𝒗 𝑯 𝟐

𝒅𝟐	𝒎

Result: Improving product state approx.

§ An improvement of 𝛀(𝒎) in estimated energy when
𝐕𝐚𝐫𝒗 𝑯 = 𝛀 𝒎 and 𝒅 = 𝐎 𝟏



Given a product state 𝒗 = 𝒗𝟏 ⊗ 𝒗𝟐 ⊗⋯⊗ |𝒗𝒏⟩

With variance 
𝐕𝐚𝐫𝒗 𝑯 = ⟨𝒗|𝑯𝟐	|𝒗⟩ − 𝒗 𝑯 𝒗 𝟐

There is a constant-depth quantum circuit 𝑼
s.t. 𝝍 = 𝑼 𝒗 satisfies 

𝝍 𝑯 𝝍 ≤ 𝒗 𝑯 𝒗 − 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 ⋅
𝐕𝐚𝐫𝒗 𝑯 𝟐

𝒅𝟐	𝒎

Result: Improving product state approx.

§ An improvement of 𝛀(𝒎) in estimated energy when
𝐕𝐚𝐫𝒗 𝑯 = 𝛀 𝒎 and 𝒅 = 𝐎 𝟏

§ No improvement when |𝒗⟩ is eigenstate of Hamiltonian
(e.g. purely classical case)



Proof Idea of 1st Result



Circuit 𝑼 for state 𝒗 = 𝒗𝟏 ⊗ 𝒗𝟐 ⊗⋯⊗ |𝒗𝒏⟩

𝑼 𝜽 = 𝚷 𝒊,𝒋 ∈𝑬	𝒆𝒊𝜽𝒊𝒋𝑷𝒊𝑷𝒋 = 𝒆𝒊 ∑ 𝜽𝒊𝒋𝑷𝒊𝑷𝒋�
𝒊,𝒋 ∈𝑬 	

𝑷𝒊 ≤ 𝟏, 						 𝒗𝒊 𝑷𝒊|𝒗𝒊 = 𝟎							∀𝒊 ∈ 𝑽

𝒊

𝒋



Circuit 𝑼 for state 𝒗 = 𝒗𝟏 ⊗ 𝒗𝟐 ⊗⋯⊗ |𝒗𝒏⟩

§ Generalizes level-1 QAOA 𝑷𝒊 = 𝒆𝒊𝜷 ∑ 𝑿𝒊�
𝒊∈𝑽 𝒁𝒊𝒆k𝒊𝜷 ∑ 𝑿𝒊�

𝒊∈𝑽

§ The circuit can be efficiently found. It has depth	= 𝒅 + 𝟏

𝑼 𝜽 = 𝚷 𝒊,𝒋 ∈𝑬	𝒆𝒊𝜽𝒊𝒋𝑷𝒊𝑷𝒋 = 𝒆𝒊 ∑ 𝜽𝒊𝒋𝑷𝒊𝑷𝒋�
𝒊,𝒋 ∈𝑬 	

𝑷𝒊 ≤ 𝟏, 						 𝒗𝒊 𝑷𝒊|𝒗𝒊 = 𝟎							∀𝒊 ∈ 𝑽



Circuit 𝑼 for state 𝒗 = 𝒗𝟏 ⊗ 𝒗𝟐 ⊗⋯⊗ |𝒗𝒏⟩

§ Slightly rotates each 𝒗𝒊 |𝒗𝒋⟩ towards the ground space:

𝑼 𝜽 = 𝚷 𝒊,𝒋 ∈𝑬	𝒆𝒊𝜽𝒊𝒋𝑷𝒊𝑷𝒋 = 𝒆𝒊 ∑ 𝜽𝒊𝒋𝑷𝒊𝑷𝒋�
𝒊,𝒋 ∈𝑬 	

𝑷𝒊 ≤ 𝟏, 						 𝒗𝒊 𝑷𝒊|𝒗𝒊 = 𝟎							∀𝒊 ∈ 𝑽

For some 𝜽𝟎 ≤ 𝑶 𝟏/𝒅 :

𝒗 𝑼 𝜽𝟎 l	𝒉𝒊𝒋	𝑼 𝜽𝟎 𝒗

≤ 𝒗 𝒉𝒊𝒋 𝒗 − 𝜽𝟎 ⋅ 𝒗 𝑷𝒊𝑷𝒋, 𝒉𝒊𝒋 𝒗 + 𝑶(𝜽𝟎𝟐𝒅)



Improved Bound and Tightness



Improved bound:
A product state |𝒗⟩ is locally optimal if for any single-
qubit operator 𝑸, 

𝒅
𝒅𝝓

𝒗 𝒆k𝒊𝝓𝑸𝑯𝒆𝒊𝝓𝑸 𝒗 = 𝟎 at   𝝓 = 𝟎

Result: locally optimal states & tightness

For locally optimal states,

𝝍 𝑯 𝝍 ≤ 𝒗 𝑯 𝒗 − 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 ⋅
𝐕𝐚𝐫𝒗 𝑯 𝟐

𝒅	𝒎



Result: locally optimal states & tightness

Tightness: 

For simple Hamiltonians e.g. 𝒉𝒊𝒋	 = 𝒁𝒊 + 𝒁𝒋 and
𝒗 = (𝐜𝐨𝐬 𝜽 𝟎 − 𝐬𝐢𝐧	(𝜽)|𝟏⟩)⊗𝒏			

We have

𝒗 𝑯 𝒗 − 𝝀𝐦𝐢𝐧 ≤ 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 ⋅
𝐕𝐚𝐫𝒗 𝑯 𝟐

𝒅𝟐	𝒎



Generic Performance 



Improvement for random product states

𝔼𝒗 𝝍 𝑯 𝝍 ≤ 𝔼𝒗 𝒗 𝑯 𝒗 − 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 ⋅
𝐪𝐮𝐚𝐝 𝑯 𝟐

𝒅	𝒎

For triangle-free graphs, we have

𝔼𝒗 𝝍 𝑯 𝝍 ≤ 𝔼𝒗 𝒗 𝑯 𝒗 − 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 ⋅
𝐪𝐮𝐚𝐝(𝑯)

𝒅�

Result: Improvement for random states

Write 𝑯 in terms of Pauli operators  𝝈𝟏, 𝝈𝟐, 𝝈𝟑, and 𝝈𝟎 = 𝑰:

𝑯 = ∑ 	∑ 	𝒇𝒙𝒚
𝒊𝒋 	𝝈𝒙𝒊 ⊗ 𝝈𝒚

𝒋�
𝒙,𝒚

�
𝒊,𝒋 ∈𝑬

Define

𝐪𝐮𝐚𝐝 𝑯 = ∑ 	∑ 	 𝒇𝒙𝒚
𝒊𝒋 𝟐�

𝒙w𝟎,𝒚w𝟎
�
𝒊,𝒋 ∈𝑬



Extensions of our Bounds



Result: 𝒌-local Hamiltonians

Given a degree-𝒅		𝒌-local Hamiltonian 𝑯
and a product state 𝒗 ,

there is a low-depth quantum circuit 𝑼 s.t. 𝝍 = 𝑼 𝒗 satisfies

𝝍 𝑯 𝝍 ≤ 𝒗 𝑯 𝒗 − 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 ⋅
𝐕𝐚𝐫𝒗 𝑯 𝟐

𝟐𝑶(𝒌)𝒅𝟒	𝒎



Let 𝒗 = 𝑾 𝟎𝒏 where 𝑾 is a quantum circuit of depth 𝑫.
We can efficiently compute a quantum circuit 𝑼
such that the state |𝝍⟩ 	= 	𝑼|𝒗⟩	satisfies 

𝝍 𝑯 𝝍 ≤ 𝒗 𝑯 𝒗 − 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 ⋅
𝐕𝐚𝐫𝒗 𝑯 𝟐

𝟐𝑶(𝑫)𝒅𝟐	𝒎

Result: Improving entangled states

ℓ𝟏𝟎

§ The circuit 𝑼 is not constant-depth anymore
§ The bound extends to when |𝝍⟩	is the unique ground state 

of some ℓ-local gapped Hamiltonian



Open Questions



Open questions

§ Can output of SDP relaxations
be directly rounded to entangled states?
[Parekh-Thompson’20, Anshu-Gosset-Morenz Korol’20]

§ Can similar strategies derive 
limitations on energy of low-depth circuits?

§ Rigorous results on performance of variational algorithms?

NLTS [Freedman-Hastings’14, Eldar-Harrow’15, Anshu-Nirkhe’21]
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