Improved Approximation Algorithms for Bounded-Degree Local Hamiltonians

Mehdi Soleimanifar (MIT) arXiv: 2105.01193

Joint work with

Anurag Anshu (Harvard) David Gosset (IQC Waterloo) Karen J. Morenz Korol (U Toronto)

Problem Statement and Background

Ground state of *H* **captures the low-temperature physics**

Believed to generally require $exp(n)$ **resources to compute**

Worst-Case Complexity and Rigorous Algorithms

1

2 Heuristic Quantum Algorithms

Worst-Case Complexity

- **Ground state energy =** $\lambda_{\min}(H) := \min_{\psi} \langle \psi | H | \psi \rangle$
- **QMA-hard to estimate** $\lambda_{\min}(\textbf{H})$ **with** $\frac{1}{\text{poly}(n)}$ **additive error**

[Kitaev'99, Kempe-Kitaev-Regev'04]

PCP Theorem: For some constant $0 < \varepsilon < 1$ **, remains NP-hard** to estimate λ_{\min} within additive error $\varepsilon \cdot m$ **QMA-hard? qPCP conjecture [Arora-Lund-Motwani-Sudan-Szegedy'98, Arora-Safra'98, Dinur'07]** **Worst-Case Complexity**

What is the best approximation of λ_{\min} (H) **achievable with efficient algorithms?**

Known rigorous algorithms e.g. for

Heisenberg-like interactions: $h_{ij} = I - X_i X_j - Y_i Y_j - Z_i Z_j$

[Gharibian-Parekh'19, Anshu-Gosset-Morenz Korol'20]

Positive semidefinite: $h_{ij} \geq 0$

[Gharibian-Kempe'12]

Traceless: $\text{Tr}[h_{ij}] = 0$

[Bravyi-Gosset-König-Temme'19]

§ **Dense or planar graphs**

[Bansal-Bravyi-Terhal'09, Gharibian-Kempe'12, Brandão-Harrow'14]

Most of these algorithms compute a quantum state $|v\rangle$ **that**

$$
|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle
$$

or

 $|v\rangle$ = tensor product of few-qubit states

But ground states may be highly entangled,

What is the structure of states which provide good approximations? **Worst-Case Complexity**

What is the structure of states which provide good approximations?

For high degree graphs,

product states provide good approximations

Monogamy of entanglement Mean-field approximation

[Brandão, Harrow 2014]

For Hamiltonians on degree-d graphs with *n* qubits and *in* interactions, there exists $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$ s.t.

$$
\langle v|H|v\rangle \leq \lambda_{\min}(H) + O\left(\frac{m}{d^{1/3}}\right)
$$

Are there improved approximation algorithms for $\lambda_{\min}(H)$ *using entangled states?*

Worst-Case Complexity

What is the structure of states which provide good approximations?

For high degree graphs,

product states provide good approximations

Monogamy of entanglement Mean-field approximation

[Brandão, Harrow 2014]

For Hamiltonians on degree-d graphs with *n* qubits and *in* interactions, there exists $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$ s.t.

$$
\langle v|H|v\rangle \leq \lambda_{\min}(H) + O\left(\frac{m}{d^{1/3}}\right)
$$

This work: Extensive improvement over product states for bounded-degree interactions via low-depth quantum circuits

Worst-Case Complexity and Rigorous Algorithms 1

2 Heuristic Quantum Algorithms

Ground states may be highly entangled So potential advantage in using quantum computers

Some near-term quantum computers can be modeled with low-depth quantum circuits model

Ground states may be highly entangled So potential advantage in using quantum computers

Some near-term quantum computers can be modeled with low-depth quantum circuits model

Many heuristic algorithms use low-depth quantum circuits

E.g. variational algorithms:

 $|\psi(\theta)\rangle = U(\theta)|0^n\rangle$

Ground states may be highly entangled So potential advantage in using quantum computers

Some near-term quantum computers can be modeled with low-depth quantum circuits model

Many heuristic algorithms use low-depth quantum circuits

Rigorous bounds on the performance of low-depth quantum circuits for estimating ground energy?

Many known rigorous algorithms output product states.

How can we improve them by applying quantum circuits?

Many near-term algorithms use low-depth quantum circuits

How can we rigorously bound their performance?

Main Results

Result: Improving product state approx.

Given a product state $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$

With variance

$$
\operatorname{Var}_v(H) = \langle v|H^2|v\rangle - \langle v|H|v\rangle^2
$$

There is a constant-depth quantum circuit \mathbf{s} .t. $|\psi\rangle = U|\psi\rangle$ satisfies

$$
\langle \psi | H | \psi \rangle \le \langle v | H | v \rangle - \text{constant} \cdot \frac{\text{Var}_{v}(H)^2}{d^2 m}
$$

 qubits *m* local terms h_{ii} d neighbors

Result: Improving product state approx.

Given a product state $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$

With variance

$$
\operatorname{Var}_v(H) = \langle v|H^2|v\rangle - \langle v|H|v\rangle^2
$$

There is a constant-depth quantum circuit s.t. $|\psi\rangle = U|\nu\rangle$ satisfies

$$
\langle \psi | H | \psi \rangle \le \langle v | H | v \rangle - \text{constant} \cdot \frac{\text{Var}_{v}(H)^2}{d^2 m}
$$

 \blacksquare An improvement of $\Omega(m)$ in estimated energy when $Var_n(H) = \Omega(m)$ and $d = O(1)$

Result: Improving product state approx.

Given a product state $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$

With variance

$$
\operatorname{Var}_v(H) = \langle v|H^2|v\rangle - \langle v|H|v\rangle^2
$$

There is a constant-depth quantum circuit s.t. $|\psi\rangle = U|\nu\rangle$ satisfies

$$
\langle \psi | H | \psi \rangle \le \langle v | H | v \rangle - \text{constant} \cdot \frac{\text{Var}_{v}(H)^2}{d^2 m}
$$

- \blacksquare An improvement of $\Omega(m)$ in estimated energy when $Var_n(H) = \Omega(m)$ and $d = O(1)$
- § **No improvement when** |⟩ **is eigenstate of Hamiltonian (e.g. purely classical case)**

Proof Idea of 1st Result

Circuit *U* for state $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$

$$
U(\theta) = \Pi_{\{i,j\} \in E} e^{i\theta_{ij} P_i P_j} = e^{i \sum_{\{i,j\} \in E} \theta_{ij} P_i P_j}
$$

$$
||P_i|| \le 1, \qquad \langle v_i | P_i | v_i \rangle = 0 \qquad \forall i \in V
$$

Circuit *U* **for state** $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$

$$
U(\theta) = \Pi_{\{i,j\} \in E} e^{i\theta_{ij} P_i P_j} = e^{i \sum_{\{i,j\} \in E} \theta_{ij} P_i P_j}
$$

$$
||P_i|| \le 1, \qquad \langle v_i | P_i | v_i \rangle = 0 \qquad \forall i \in V
$$

- Generalizes level-1 QAOA $P_i = e^{i\beta \sum_{i \in V} X_i} Z_i e^{-i\beta \sum_{i \in V} X_i}$
- **Fig. 1** The circuit can be efficiently found. It has depth $= d + 1$

Circuit *U* **for state** $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$

$$
U(\theta) = \Pi_{\{i,j\} \in E} e^{i\theta_{ij} P_i P_j} = e^{i \sum_{\{i,j\} \in E} \theta_{ij} P_i P_j}
$$

$$
||P_i|| \le 1, \qquad \langle v_i | P_i | v_i \rangle = 0 \qquad \forall i \in V
$$

■ Slightly rotates each $|v_i\rangle|v_j\rangle$ towards the ground space:

For some $\theta_0 \leq O(1/d)$:

 $\langle v|U(\theta_0)^{\dagger} h_{ij} U(\theta_0)|v\rangle$ $\leq \langle v|h_{ij}|v\rangle - \theta_0 \cdot |\langle v|[P_iP_j, h_{ij}]|v\rangle| + O(\theta_0^2d)$

Improved Bound and Tightness

Result: locally optimal states & tightness

Improved bound:

A product state $|v\rangle$ is locally optimal if for any single**qubit operator ,**

$$
\frac{d}{d\phi}\langle v|e^{-i\phi Q}He^{i\phi Q}|v\rangle = 0 \quad \text{at} \quad \phi = 0
$$

For locally optimal states, $\langle \psi | H | \psi \rangle \leq \langle v | H | v \rangle$ – constant \cdot – $Var_{\nu}(H)^2$ \boldsymbol{d} m

Result: locally optimal states & tightness

Tightness:

For simple Hamiltonians e.g. $h_{ij} = Z_i + Z_j$ and $|v\rangle = (\cos(\theta)|0\rangle - \sin(\theta)|1\rangle)^{\otimes n}$ **We have** $\bm{v}|\bm{H}|\bm{v}\rangle-\lambda_{\textbf{min}}\leq \textbf{constant}\cdot \bm{v}$ $\text{Var}_{\nu}(H)^2$ $d^2 m$

Generic Performance

Result: Improvement for random states

Write *H* in terms of Pauli operators σ_1 , σ_2 , σ_3 , and $\sigma_0 = I$:

$$
H = \textstyle \sum_{\{i,j\} \in E} \sum_{x,y} f_{xy}^{ij} \sigma_x^i \otimes \sigma_y^j
$$

Define

 = ∑ ∑ , ∈ w,w

Improvement for random product states

 $\mathbb{E}_{\nu}\langle \boldsymbol{\psi}|H|\boldsymbol{\psi}\rangle \leq \mathbb{E}_{\nu}\langle \boldsymbol{\nu}|H|\boldsymbol{\nu}\rangle - \text{constant} \cdot \delta$ quad $(H)^2$ \boldsymbol{d} m

For triangle-free graphs, we have

 $\mathbb{E}_{\nu}\langle \bm{\psi}|H|\bm{\psi}\rangle \leq \mathbb{E}_{\nu}\langle \bm{\nu}|H|\bm{\nu}\rangle - \text{constant} \cdot \delta$ $quad(H)$ \boldsymbol{d}

Extensions of our Bounds

Given a degree- *d* k-local Hamiltonian *H* and a product state $|v\rangle$, **there is a low-depth quantum circuit U s.t.** $|\psi\rangle = U|\nu\rangle$ satisfies $\langle \psi | H | \psi \rangle \leq \langle \psi | H | \psi \rangle$ — constant \cdot $\text{Var}_{\nu}(H)^2$ $(2^{O(k)}d^4)$

Let $|v\rangle = W|0^n\rangle$ where W is a quantum circuit of depth D. **We can efficiently compute a quantum circuit** such that the state $|\psi\rangle = U|\nu\rangle$ satisfies

$$
\langle \psi | H | \psi \rangle \le \langle v | H | v \rangle - \text{constant} \cdot \frac{\text{Var}_{v}(H)^2}{2^{O(D)} d^2 m}
$$

- \blacksquare The circuit \boldsymbol{U} is not constant-depth anymore
- \blacksquare The bound extends to when $|\psi\rangle$ is the unique ground state **of some** ℓ**-local gapped Hamiltonian**

Open Questions

Open questions

§ **Can output of SDP relaxations be directly rounded to entangled states?**

[Parekh-Thompson'20, Anshu-Gosset-Morenz Korol'20]

§ **Can similar strategies derive limitations on energy of low-depth circuits?**

NLTS [Freedman-Hastings'14, Eldar-Harrow'15, Anshu-Nirkhe'21]

§ **Rigorous results on performance of variational algorithms?**

Open questions

§ **Can output of SDP relaxations be directly rounded to entangled states?**

[Parekh-Thompson'20, Anshu-Gosset-Morenz Korol'20]

§ **Can similar strategies derive limitations on energy of low-depth circuits?**

NLTS [Freedman-Hastings'14, Eldar-Harrow'15, Anshu-Nirkhe'21]

§ **Rigorous results on performance of variational algorithms?**

Improved Approximation Algorithms for Bounded-Degree Local Hamiltonians

Mehdi Soleimanifar (MIT) arXiv: 2105.01193

Joint work with

Anurag Anshu (Harvard) David Gosset (IQC Waterloo) Karen J. Morenz Korol (U Toronto)