Improved Approximation Algorithms for Bounded-Degree Local Hamiltonians

Mehdi Soleimanifar (MIT) arXiv: 2105.01193

Joint work with

Anurag Anshu (Harvard) David Gosset (IQC Waterloo) Karen J. Morenz Korol (U Toronto)

Problem Statement and Background

Ground state of *H* captures the low-temperature physics

Believed to generally require exp(n) resources to compute

Worst-Case Complexity and Rigorous Algorithms

2 Heuristic Quantum Algorithms

Worst-Case Complexity

- Ground state energy = $\lambda_{\min}(H) := \min_{\psi} \langle \psi | H | \psi \rangle$
- QMA-hard to estimate $\lambda_{\min}(H)$ with $\frac{1}{poly(n)}$ additive error

[Kitaev'99, Kempe-Kitaev-Regev'04]

 PCP Theorem: For some constant 0 < ε < 1, remains NP-hard to estimate λ_{min} within additive error ε · m [Arora-Lund-Motwani-Sudan-Szegedy'98, Arora-Safra'98, Dinur'07] **Worst-Case Complexity**

What is the best approximation of $\lambda_{\min}(H)$ achievable with efficient algorithms?

Known rigorous algorithms e.g. for

• Heisenberg-like interactions: $h_{ij} = I - X_i X_j - Y_i Y_j - Z_i Z_j$

[Gharibian-Parekh'19, Anshu-Gosset-Morenz Korol'20]

■ Positive semidefinite: *h_{ij}* ≥ 0

[Gharibian-Kempe'12]

• Traceless: $Tr[h_{ij}] = 0$

[Bravyi-Gosset-König-Temme'19]

Dense or planar graphs

[Bansal-Bravyi-Terhal'09, Gharibian-Kempe'12, Brandão-Harrow'14]

Most of these algorithms compute a quantum state $|v\rangle$ that

$$|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$$

or

 $|v\rangle$ = tensor product of few-qubit states

But ground states may be highly entangled,

What is the structure of states which provide good approximations?

Worst-Case Complexity

What is the structure of states which provide good approximations?

For high degree graphs,

product states provide good approximations

Monogamy of entanglement Mean-field approximation

[Brandão, Harrow 2014]

For Hamiltonians on degree-*d* graphs with *n* qubits and *m* interactions, there exists $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$ s.t.

$$\langle \boldsymbol{v} | \boldsymbol{H} | \boldsymbol{v} \rangle \leq \lambda_{\min}(\boldsymbol{H}) + \boldsymbol{O}\left(\frac{m}{d^{1/3}}\right)$$

Are there **improved** approximation algorithms for $\lambda_{\min}(H)$ using **entangled** states? **Worst-Case Complexity**

What is the structure of states which provide good approximations?

For high degree graphs,

product states provide good approximations

Monogamy of entanglement Mean-field approximation

[Brandão, Harrow 2014]

For Hamiltonians on degree-*d* graphs with *n* qubits and *m* interactions, there exists $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$ s.t.

$$\langle \boldsymbol{v}|\boldsymbol{H}|\boldsymbol{v}\rangle \leq \lambda_{\min}(\boldsymbol{H}) + \boldsymbol{O}\left(\frac{m}{d^{1/3}}\right)$$

This work: Extensive improvement over product states for bounded-degree interactions via low-depth quantum circuits

1 Worst-Case Complexity and Rigorous Algorithms

2 Heuristic Quantum Algorithms

Ground states may be highly entangled So potential advantage in using quantum computers

Some near-term quantum computers can be modeled with low-depth quantum circuits model

Ground states may be highly entangled So potential advantage in using quantum computers

Some near-term quantum computers can be modeled with low-depth quantum circuits model

Many heuristic algorithms use low-depth quantum circuits

E.g. variational algorithms:

 $|\psi(\theta)
angle = \frac{U(\theta)}{|0^n
angle}$

Ground states may be highly entangled So potential advantage in using quantum computers

Some near-term quantum computers can be modeled with low-depth quantum circuits model

Many heuristic algorithms use low-depth quantum circuits

Rigorous bounds on the performance of low-depth quantum circuits for estimating ground energy?

Many known rigorous algorithms output product states.

How can we **improve** them by applying **quantum circuits**?

Many near-term algorithms use low-depth quantum circuits

How can we rigorously bound their performance?

Main Results

Result: Improving product state approx.

Given a product state $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$

With variance

$$\operatorname{Var}_{v}(H) = \langle v | H^{2} | v \rangle - \langle v | H | v \rangle^{2}$$

There is a constant-depth quantum circuit Us.t. $|\psi\rangle = U|v\rangle$ satisfies

$$\langle \psi | H | \psi \rangle \leq \langle v | H | v \rangle - \text{constant} \cdot \frac{\text{Var}_v(H)^2}{d^2 m}$$

n qubits *m* local terms *h*_{ij} *d* neighbors

Result: Improving product state approx.

Given a product state $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$

With variance

$$\operatorname{Var}_{v}(H) = \langle v | H^{2} | v \rangle - \langle v | H | v \rangle^{2}$$

There is a constant-depth quantum circuit Us.t. $|\psi\rangle = U|v\rangle$ satisfies

```
\langle \psi | H | \psi \rangle \leq \langle v | H | v \rangle - \text{constant} \cdot \frac{\text{Var}_{v}(H)^{2}}{d^{2} m}
```

• An improvement of $\Omega(m)$ in estimated energy when $\operatorname{Var}_{v}(H) = \Omega(m)$ and d = O(1)

Result: Improving product state approx.

Given a product state $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$

With variance

$$\operatorname{Var}_{v}(H) = \langle v | H^{2} | v \rangle - \langle v | H | v \rangle^{2}$$

There is a constant-depth quantum circuit Us.t. $|\psi\rangle = U|v\rangle$ satisfies

$$\langle \psi | H | \psi \rangle \leq \langle v | H | v \rangle - \text{constant} \cdot \frac{\text{Var}_{v}(H)^{2}}{d^{2} m}$$

- An improvement of $\Omega(m)$ in estimated energy when $\operatorname{Var}_{v}(H) = \Omega(m)$ and d = O(1)
- No improvement when |v> is eigenstate of Hamiltonian (e.g. purely classical case)

Proof Idea of 1st Result

Circuit *U* for state $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$

$$U(\theta) = \prod_{\{i,j\}\in E} e^{i\theta_{ij}P_iP_j} = e^{i\sum_{\{i,j\}\in E} \theta_{ij}P_iP_j}$$
$$\|P_i\| \le 1, \qquad \langle v_i|P_i|v_i\rangle = 0 \quad \forall i \in V$$

Circuit *U* for state $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$

$$U(\theta) = \prod_{\{i,j\}\in E} e^{i\theta_{ij}P_iP_j} = e^{i\sum_{\{i,j\}\in E} \theta_{ij}P_iP_j}$$
$$\|P_i\| \le 1, \qquad \langle v_i|P_i|v_i\rangle = 0 \quad \forall i \in V$$

- Generalizes level-1 QAOA $P_i = e^{i\beta \sum_{i \in V} X_i} Z_i e^{-i\beta \sum_{i \in V} X_i}$
- The circuit can be efficiently found. It has depth = d + 1

Circuit *U* for state $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle$

$$U(\theta) = \prod_{\{i,j\}\in E} e^{i\theta_{ij}P_iP_j} = e^{i\sum_{\{i,j\}\in E} \theta_{ij}P_iP_j}$$
$$\|P_i\| \le 1, \qquad \langle v_i|P_i|v_i\rangle = 0 \quad \forall i \in V$$

• Slightly rotates each $|v_i\rangle|v_j\rangle$ towards the ground space:

For some $\theta_0 \leq O(1/d)$:

 $\begin{aligned} \langle v | U(\theta_0)^{\dagger} h_{ij} U(\theta_0) | v \rangle \\ \leq \langle v | h_{ij} | v \rangle - \theta_0 \cdot | \langle v | [P_i P_j, h_{ij}] | v \rangle | + O(\theta_0^2 d) \end{aligned}$

Improved Bound and Tightness

Result: locally optimal states & tightness

Improved bound:

A product state $|v\rangle$ is locally optimal if for any singlequbit operator Q,

$$\frac{d}{d\phi}\langle v | e^{-i\phi Q} H e^{i\phi Q} | v \rangle = 0 \quad \text{at} \quad \phi = 0$$

For locally optimal states, $\langle \psi | H | \psi \rangle \leq \langle v | H | v \rangle - \text{constant} \cdot \frac{\text{Var}_v(H)^2}{d m}$

Result: locally optimal states & tightness

Tightness:

For simple Hamiltonians e.g. $h_{ij} = Z_i + Z_j$ and $|v\rangle = (\cos(\theta) |0\rangle - \sin(\theta) |1\rangle)^{\otimes n}$ We have $\langle v|H|v\rangle - \lambda_{\min} \leq \text{constant} \cdot \frac{\text{Var}_v(H)^2}{d^2 m}$

Generic Performance

Result: Improvement for random states

Write *H* in terms of Pauli operators $\sigma_1, \sigma_2, \sigma_3$, and $\sigma_0 = I$:

$$H = \sum_{\{i,j\}\in E} \sum_{x,y} f_{xy}^{ij} \sigma_x^i \otimes \sigma_y^j$$

Define

$$quad(H) = \sum_{\{i,j\}\in E} \sum_{x>0,y>0} \left(f_{xy}^{ij}\right)^2$$

Improvement for random product states

 $\mathbb{E}_{v}\langle \psi|H|\psi\rangle \leq \mathbb{E}_{v}\langle v|H|v\rangle - \text{constant} \cdot \frac{\text{quad}(H)^{2}}{d m}$

For triangle-free graphs, we have

$$\mathbb{E}_{v}\langle \psi|H|\psi\rangle \leq \mathbb{E}_{v}\langle v|H|v\rangle - \text{constant} \cdot \frac{\text{quad}(H)}{\sqrt{d}}$$

Extensions of our Bounds

Given a degree-d k-local Hamiltonian H and a product state $|v\rangle$, there is a low-depth quantum circuit U s.t. $|\psi\rangle = U|v\rangle$ satisfies $\langle \psi | H | \psi \rangle \leq \langle v | H | v \rangle - \text{constant} \cdot \frac{\text{Var}_{v}(H)^{2}}{2^{0(k)} d^{4} m}$

Let $|v\rangle = W|0^n\rangle$ where *W* is a quantum circuit of depth *D*. We can efficiently compute a quantum circuit *U* such that the state $|\psi\rangle = U|v\rangle$ satisfies

$$\langle \psi | H | \psi \rangle \leq \langle v | H | v \rangle - \text{constant} \cdot \frac{\text{Var}_{v}(H)^{2}}{2^{O(D)}d^{2} m}$$

$$\downarrow^{10}$$

- The circuit U is not constant-depth anymore
- The bound extends to when $|\psi\rangle$ is the unique ground state of some ℓ -local gapped Hamiltonian

Open Questions

Open questions

Can output of SDP relaxations be directly rounded to entangled states?

[Parekh-Thompson'20, Anshu-Gosset-Morenz Korol'20]

Can similar strategies derive limitations on energy of low-depth circuits?

NLTS [Freedman-Hastings'14, Eldar-Harrow'15, Anshu-Nirkhe'21]

Rigorous results on performance of variational algorithms?

Open questions

Can output of SDP relaxations be directly rounded to entangled states?

[Parekh-Thompson'20, Anshu-Gosset-Morenz Korol'20]

Can similar strategies derive limitations on energy of low-depth circuits?

NLTS [Freedman-Hastings'14, Eldar-Harrow'15, Anshu-Nirkhe'21]

Rigorous results on performance of variational algorithms?

Improved Approximation Algorithms for Bounded-Degree Local Hamiltonians

Mehdi Soleimanifar (MIT) arXiv: 2105.01193

Joint work with

Anurag Anshu (Harvard) David Gosset (IQC Waterloo) Karen J. Morenz Korol (U Toronto)