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Quantum State Certification
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Previous approaches to state certification
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Previous approaches to state certification

Measure UTpU with {|0™)(0™|,1 — |0™)(0™|}
or perform SWAP test on p and |)

- For general ), requires applying
highly complex U (or UT) s.t. |¢) = U|0™)
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Previous approaches to state certification

Classical shadows:

Option 1: circuits and measurements
- Requires deep quantum circuits involving random gates

- Costly post-processing with many queries for general |)
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Previous approaches to state certification

Classical shadows:

Option 2: measurements

- Requires exp(n) samples for general |{)
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Previous approaches to state certification

Cross-Entropy Benchmarking (XEB)
XEB x E,.,[{z|yp)|* —1/2"

- Heuristic and can incorrectly certify when (9 |p|Y) « 1
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Previous approaches to state certification

Many other methods use

But only work for special families of states |y)

Including:
- Hypergraph states, output states of IQP circuits [TM 18]
- Bosonic Gaussian states [AGKE15]
- Fermionic Gaussian states [GKEA18]



Previous approaches to state certification

Existing approaches to certification either

- Require deep quantum circuits
- Need exp(n) many single-qubit measurements

- Heuristic without performance guarantees

- Restricted to special tamilies of (low-entangled) states

Can we certify quantum states
with few single-qubit measurements?




Main results

For almost all n-qubit states |1), we can certify p is close to
l1p) using only 0(n?) rounds of single-qubit measurements.

- Applies to any arbitrary p

- 0(n*) samples even when |¢) has exp(n) circuit
complexity

- 2 queries to amplitudes of |1) in each measurement round



What about structured/specific target states?



Relaxation time
Measurement distribution: (z) = |{z|y)|* for z € {0, 1}"

We think of m(z) as stationary dist. of a random walk

n(z1)
n(zp)+m(z1)

prob m(zo) (\

n(zg)+m(z1)

prob.




Relaxation time
Measurement distribution: (z) = |{z|y)|* for z € {0, 1}"

We think of m(z) as stationary dist. of a random walk

T is relaxation time of random walk to stationary dist. m(z)
001 011




What about structured/specific target states?



Main results

For an n-qubit state |) with relax. time 7, we can certity p is
close to |) using O(t) rounds of single-qubit measurements.

- 0(t*) rounds of single-qubit Pauli measurements is sufficient.

Measurement protocol becomes offline independent of |).
- We show that T = 0(n*) for Haar random n-qubit states

- Also 7 = poly(n) for many structured states
(e.g. phase states, ground states, GHZ state)



What is the certification protocol?

One qubit at a time: compare locally, guarantee globally



Shadow overlap protocol

Lab state p Target state
[P) = 2y €{0,1}" P(x)]x)
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* o Naive idea:

For each copy of p, choose a qubit at random

Compare the state of that qubit between p and |Y)

Issue: state of a single qubit ~ maximally mixed



Shadow overlap protocol

Lab state p Target state
. = [P) = 2y €{0,1}" Y (x)|x)
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classical shadow of qubit k [¥20.21) % ¥(20)10) +P(21)[1)

3 —1 Post-meas. state of qubit k



Shadow overlap protocol

Predict overlap w of and

© = (P, 7,| Bls)SI=D) [P,

' Shadow overlap = E[w]

/

classical shadow of qubit k [¥20.21) % ¥(20)10) +P(21)[1)
3 —1 Post-meas. state of qubit k



Shadow overlap vs fidelity

Shadow overlap E[w] accurately tracks tidelity (¢ |p|y).

{lw] > 1—€implies (Y|plYp) =1—re€.

(WlplY) =1—€implies Elw] > 1 —€.

T as before is relaxation time of the walk induced by |)



Proof idea
Claim: Shadow overlap E[w] = Tr(L p)
Observable L = Approximate projector onto [y)(y]

- L h/’) — h/’) /Relaxation time

- WLty <1-1/7

I — L is like a sparse Hamiltonian with ground state [)



Proof idea
Claim: Shadow overlap E[w] = Tr(L p)
Observable L = Approximate projector onto [y)(y]

- L h/’) — h/’) /Relaxation time

- WLty <1-1/7

L = (normalized) transition matrix of a random walk

z1001 011
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Applications: Benchmarking quantum devices

p is prepared by a noisy quantum device

lY) is the ideal state

Goal:
Certify (¢|p|y) is large



Applications: Benchmarking quantum devices

Hilbert space d = 22° (Haar)
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* Shadow overlap normalized s.t. target state is 1, maximally mixed state is 1/2"



Applications: Benchmarking quantum devices

Hilbert space d = 229 (Haar)
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* Shadow overlap normalized s.t. target state is 1, maximally mixed state is 1/2"



Applications: Benchmarking quantum devices

Hilbert space d = 22° (Phase)
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* Shadow overlap normalized s.t. target state is 1, maximally mixed state is 1/2"



Applications: Benchmarking quantum devices

Hilbert space d = 229 (Phase)
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* Shadow overlap normalized s.t. target state is 1, maximally mixed state is 1/2"



Applications: Benchmarking quantum devices

Hilbert space d = 229 (Phase)
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* Shadow overlap normalized s.t. target state is 1, maximally mixed state is 1/2"
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Applications: ML tomography of quantum states

cefor P isanunknown quantum state

|’ m I |Yg) is an ML model with parameters 0
I I
| | (a.k.a. neural quantum state)

/| Goal:

~=7—-" Train/Certify 8" such that (g |p|th) is large



Applications: ML tomography of quantum states

- Learning random binary phase states with n=120:
1
oL er{0,1}n(—1)¢(x) |x)

Highly entangled state for random ¢(x) € {0, 1}

- Train and certify neural net using shadow overlap



Applications: ML tomography of quantum states

- Learning random binary phase states with n=120:
1
oL er{0,1}n(—1)¢(x) | x)

Highly entangled state for random ¢(x) € {0, 1}

----- Shadow-based log loss (Training)
Shadow-based log loss (Validation)
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Applications: ML tomography of quantum states

- Learning random binary phase states with n=120:
1
oL er{0,1}n(—1)¢(x) | x)

Highly entangled state for random ¢(x) € {0, 1}

----- Shadow-based log loss (Training) *  Fidelity
Shadow-based log loss (Validation) Shadow Overlap
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Applications: ML tomography of quantum states

- Learning random binary phase states with n=120:
1
oL er{0,1}n(—1)¢(x) | x)

Highly entangled state for random ¢(x) € {0, 1}

- Can estimate non-local properties that need 22™ single-qubit
meas.



Applications: ML tomography of quantum states

Learning random binary phase states with n=120 :

1
ﬁzxe{m}n(—l)d)m | x)

Highly entangled state for random ¢(x) € {0, 1}
- Can estimate purity tr(p%) that needs 22U4D single-qubit meas.

- Ground Truth Trained NQS (Fidelity = 1.00)
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Applications: Optimizing quantum circuits

J}ﬂﬁﬁ pc is prepared by parametrized circuit €

) |Y) I1s a target state

- 'Tg[’L Goal:
TTTT Optimize circuit to prepare |Y): max (P|p:|P)



Applications: Optimizing quantum circuits

- We consider preparing an n-qubit MPS
with H, CZ, T gates

- State is output of |QP circuit + T gates
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Applications: Optimizing quantum circuits

--m-  Shadow Ovel’lap
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Applications: Optimizing quantum circuits

- We consider preparing an n-qubit MPS

with H, CZ, T gates

- State is output of |QP circuit + T gates
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Applications: Optimizing quantum circuits

--m-  Shadow Ovel’lap
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Applications: Optimizing quantum circuits

- We consider preparing an n-qubit MPS

with H, CZ, T gates

- State is output of |QP circuit + T gates
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Applications: Optimizing quantum circuits

- We consider preparing an n-qubit MPS

with H, CZ, T gates

- State is output of |QP circuit + T gates
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Applications: Optimizing quantum circuits

- We consider preparing an n-qubit MPS

with H, CZ, T gates

- State is output of |QP circuit + T gates
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Applications: Optimizing quantum circuits

- We consider preparing an n-qubit MPS

with H, CZ, T gates

- State is output of |QP circuit + T gates
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Applications: Optimizing quantum circuits

- We consider preparing an n-qubit MPS

with H, CZ, T gates

- State is output of |QP circuit + T gates
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Applications: Optimizing quantum circuits

--e-- Fidelity
--m-  Shadow Ovel’lap
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Applications: Optimizing quantum circuits

n =50 Trained w/ shadow ove.
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Applications: Optimizing quantum circuits

----------- Trained w/ fidelity

—— Trained w/ shadow ove.

Monte-Carlo circuit optimization

with shadow overlap & fidelity

Shadow Overlap

for preparing 50-qubit MPS
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Shadow overlap protocol

Lab state p Target state
_ [P) = 2y €{0,1}" (x[) |x)
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(N 11110 s) —
__l =S Zo = 1010001
9 nt z, = 1010101
l n bits l
classical shadow of qubit k [¥20.21) % ¥(20)10) +P(21)[1)

3 — 1 Post-meas. state of qubit k
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Open questions

- Which families of states have fast relaxation time 7 < poly(n)?

- Can we certify all quantum states with few single-qubit measurements?

- Which states admit efficient access to their amplitudes x - P (x)?
e.g. via classical neural networks?



Thank youl!
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