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Model !

Quantum State Certification

⟨𝝍 𝝆 𝝍⟩ is close to 1 or far from 1?

measurement data

𝒙 ∈ 𝟎, 𝟏 𝒏 𝝍(𝒙)

Lab state 𝝆

query access to |𝝍⟩ 

Target state 
|𝝍⟩ = ∑𝒙	∈{𝟎,𝟏}𝒏 	𝝍 𝒙 𝒙  
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of quantum states
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Previous approaches to state certification

Lab state 𝝆

𝑼! 𝟎𝒏 ?

Measure 𝑼!𝝆𝑼 with { 𝟎𝒏 ⟨𝟎𝒏|, 𝐈 − 𝟎𝒏 𝟎𝒏 } 
         or perform SWAP test on 𝝆 and 𝝍

- For general 𝝍 , requires applying 
          highly complex 𝑼 (or 𝑼%) s.t. 𝝍 = 𝑼 𝟎𝒏



Previous approaches to state certification

Classical shadows:

Option 1: Random Clifford circuits and Z-basis measurements
- Requires deep quantum circuits involving random gates

- Costly post-processing with many queries for general |𝝍⟩

Random Clifford Lab state 𝝆



Previous approaches to state certification

Classical shadows:

Option 2: Random Pauli measurements

- Requires 𝐞𝐱𝐩(𝒏)	samples for general 𝝍

Random X/Y/Z-basis

Lab state 𝝆



Previous approaches to state certification

Cross-Entropy Benchmarking (XEB)

XEB ∝ 𝔼𝒛∼𝝆 𝒛 𝝍
𝟐
(𝟏/𝟐𝒏

𝔼𝒛∼𝝍 𝒛 𝝍 𝟐
(𝟏/𝟐𝒏

- Heuristic and can incorrectly certify when 𝝍 𝝆 𝝍 ≪ 𝟏

Z-basis

Lab state 𝝆

𝔼𝒛∼𝝆 𝒛 𝝍 𝟐 − 𝟏/𝟐𝒏



Previous approaches to state certification

Many other methods use Pauli measurements
      But only work for special families of states |𝝍⟩ 

Including: 
 - Hypergraph states, output states of IQP circuits [TM18] 

 - Bosonic Gaussian states [AGKE15]

 - Fermionic Gaussian states [GKEA18] 



Previous approaches to state certification

Existing approaches to certification either

- Require deep quantum circuits  

- Need exp(n) many single-qubit measurements 

- Heuristic without performance guarantees 

- Restricted to special families of (low-entangled) states

Can we certify quantum states
 with few single-qubit measurements?



Main results

- Applies to any arbitrary 𝝆

- 𝑶(𝒏𝟐) samples even when |𝝍⟩ has 𝐞𝐱𝐩(𝒏) circuit 
complexity

- 2 queries to amplitudes of |𝝍⟩ in each measurement round

For almost all 𝒏-qubit states |𝝍⟩, we can certify 𝝆	is close to 
|𝝍⟩ using only 𝑶(𝒏𝟐) rounds of single-qubit measurements.



What about structured/specific target states?
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Relaxation time
Measurement distribution: 𝝅 𝒛 = 𝒛 𝝍 𝟐 for 𝒛 ∈ 𝟎, 𝟏 𝒏

We think of 𝝅 𝒛  as stationary dist. of a random walk

𝝉 is relaxation time of random walk to its stationary dist. 𝝅 𝒛
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What about structured/specific target states?



Main results

For an 𝒏-qubit state |𝝍⟩	with relax. time 𝝉, we can certify 𝝆	is 
close to |𝝍⟩ using 𝑶(𝝉) rounds of single-qubit measurements.

- 𝑶(𝝉𝟐) rounds of single-qubit Pauli measurements is sufficient.
 

   Measurement protocol becomes offline independent of 𝝍 .

- We show that 𝝉 = 𝑶(𝒏𝟐) for Haar random n-qubit states

- Also 𝝉 = 𝐩𝐨𝐥𝐲(𝒏) for many structured states 
         (e.g. phase states, ground states, GHZ state)



What is the certification protocol?

One qubit at a time: compare locally, guarantee globally 



Model !

Shadow overlap protocol

Lab state 𝝆

qubit k

Naïve idea: 

For each copy of 𝝆, choose a qubit at random 

Compare the state of that qubit between 𝝆 and |𝝍⟩  

Issue: state of a single qubit ≈ maximally mixed   

Target state 
|𝝍⟩ = ∑𝒙	∈{𝟎,𝟏}𝒏 	𝝍 𝒙 𝒙  



Shadow overlap protocol

Model !
Random 
X/Y/Z-basis

Z-basis
1 0

1 0

0 1

Lab state 𝝆

𝒛𝟎 = 𝟏𝟎𝟏𝟎𝟎𝟎𝟏
𝒛𝟏 = 𝟏𝟎𝟏𝟎𝟏𝟎𝟏

qubit k

n bits

|𝒔⟩

classical shadow of qubit k 
𝟑 𝐬 𝐬 − 𝐈

𝝍𝒛𝟎,𝒛𝟏 ∝ 𝝍(𝒛𝟎) 0 + 𝝍(𝒛𝟏)|1⟩

Post-meas. state of qubit k

Target state 
|𝝍⟩ = ∑𝒙	∈{𝟎,𝟏}𝒏 	𝝍 𝒙 𝒙  



Shadow overlap protocol

Shadow overlap = 𝔼[𝝎]

Predict overlap 𝝎	of qubit k and 𝝍𝒛𝟎,𝒛𝟏 	

classical shadow of qubit k 
𝟑 𝐬 𝐬 − 𝐈

𝝎 =	 ⟨𝝍𝒛𝟎,	𝒛𝟏| 𝟑 𝐬 𝐬 −𝐈 	|𝝍𝒛𝟎,	𝒛𝟏⟩

Post-meas. state of qubit k
𝝍𝒛𝟎,𝒛𝟏 ∝ 𝝍(𝒛𝟎) 0 + 𝝍(𝒛𝟏)|1⟩



Shadow overlap vs fidelity

Shadow overlap 𝔼[𝝎]	accurately tracks fidelity 𝝍 𝝆|𝝍⟩.

𝔼 𝝎 ≥ 1 − 𝜖 implies 𝝍 𝝆 𝝍 ≥ 1 − 𝝉	𝜖.

𝝍 𝝆 𝝍 ≥ 1 − 𝜖 implies 𝔼 𝝎 ≥ 1 − 𝜖.

𝝉 as before is relaxation time of the walk induced by 𝝍  



Proof idea
Claim: Shadow overlap 𝔼 𝝎 = 𝐓𝐫(𝑳	𝝆)

   Observable 𝑳 = Approximate projector onto 𝝍 ⟨𝝍|

- 𝑳 𝝍 = 𝝍
- ⟨𝝍-|𝑳 𝝍- ≤ 𝟏 − 𝟏/𝝉

Relaxation time 

𝑰 − 	𝑳 is like a sparse Hamiltonian with ground state 𝝍  



Proof idea
Claim: Shadow overlap 𝔼 𝝎 = 𝐓𝐫(𝑳	𝝆)

   Observable 𝑳 = Approximate projector onto 𝝍 ⟨𝝍|

𝑳 = (normalized) transition matrix of a random walk
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Relaxation time - 𝑳 𝝍 = 𝝍
- ⟨𝝍-|𝑳 𝝍- ≤ 𝟏 − 𝟏/𝝉
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𝝆 is prepared by a noisy quantum device

|𝝍⟩ is the ideal state

Goal:
Certify ⟨𝝍 𝝆 𝝍⟩ is large

Applications: Benchmarking quantum devices



Benchmarking quantum devices

20-qubit Haar random state 
White Noise

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n

Applications: Benchmarking quantum devices

20-qubit Haar random state
with white noise

* Shadow overlap normalized s.t. target state is 𝟏, maximally mixed state is 𝟏/𝟐𝒏



Benchmarking quantum devices

20-qubit Haar random state 
Coherent Noise

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n

20-qubit Haar random state
with coherent noise

Applications: Benchmarking quantum devices

* Shadow overlap normalized s.t. target state is 𝟏, maximally mixed state is 𝟏/𝟐𝒏



Benchmarking quantum devices

20-qubit random structured state 
White Noise

|ψ⟩ = Uphase

20

⨂
i=1

|ψi⟩

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n

𝝍 = 𝑼𝐩𝐡𝐚𝐬𝐞	⊗𝒌0𝟏
𝟐𝟎 |𝝍𝒊⟩ 

Applications: Benchmarking quantum devices

20-qubit random phase state
with white noise

* Shadow overlap normalized s.t. target state is 𝟏, maximally mixed state is 𝟏/𝟐𝒏



Benchmarking quantum devices

20-qubit random structured state 
White Noise

|ψ⟩ = Uphase

20

⨂
i=1

|ψi⟩

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n

𝝍 = 𝑼𝐩𝐡𝐚𝐬𝐞	⊗𝒌0𝟏
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Applications: Benchmarking quantum devices

20-qubit random phase state
with white noise

* Shadow overlap normalized s.t. target state is 𝟏, maximally mixed state is 𝟏/𝟐𝒏

𝑈)*+,-	 = diag(𝑒/0! , … , 𝑒/0"#)
𝜓/ = cos 𝜃/ 0 + sin 𝜃/ |1⟩



Benchmarking quantum devices

20-qubit random structured state 
Coherent Noise

|ψ⟩ = Uphase

20

⨂
i=1

|ψi⟩

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
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 quantum devices
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𝝆 is an unknown quantum state

|𝝍𝜽⟩ is an ML model with parameters 𝜽 
   (a.k.a. neural quantum state)

Goal:
Train/Certify 𝜽∗ such that ⟨𝝍𝜽∗ 𝝆 𝝍𝜽∗⟩ is large

𝒙 ∈ 𝟎, 𝟏 𝒏

Applications: ML tomography of quantum states

𝝍𝜽(𝒙)



Applications: ML tomography of quantum states
- Learning random binary phase states with n=120 :  

𝟏
𝟐𝒏
∑𝒙∈{𝟎,𝟏}𝒏 −𝟏 𝝓 𝒙 |𝒙⟩ 

   

 Highly entangled state for random 𝝓 𝒙 ∈ {𝟎, 𝟏}

 - Train and certify neural net using shadow overlap



Applications: ML tomography of quantum states
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(b)
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Applications: ML tomography of quantum states
- Learning random binary phase states with n=120 :  

𝟏
𝟐𝒏
∑𝒙∈{𝟎,𝟏}𝒏 −𝟏 𝝓 𝒙 |𝒙⟩ 

   

 Highly entangled state for random 𝝓 𝒙 ∈ {𝟎, 𝟏}

- Can estimate non-local properties that need 𝟐𝑶(𝒏) single-qubit 
meas.



Applications: ML tomography of quantum states
- Learning random binary phase states with n=120 :  

𝟏
𝟐𝒏
∑𝒙∈{𝟎,𝟏}𝒏 −𝟏 𝝓 𝒙 |𝒙⟩ 

   

 Highly entangled state for random 𝝓 𝒙 ∈ {𝟎, 𝟏}

- Can estimate purity 𝐭𝐫(𝝆𝑨𝟐) that needs 𝟐𝑶 𝑨  single-qubit meas.
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ApplicationsApplications: Optimizing quantum circuits

|0"⟩

𝝆𝑪

𝝆𝑪 is prepared by parametrized circuit 𝑪

|𝝍⟩ is a target state

Goal:
Optimize circuit to prepare |𝝍⟩: 𝐦𝐚𝐱𝑪⟨𝝍 𝝆𝑪 𝝍⟩ 



Applications: Optimizing quantum circuits

- We consider preparing an n-qubit MPS
    with H, CZ, T gates

- State is output of IQP circuit + T gates
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Applications: Optimizing quantum circuits
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Applications: Optimizing quantum circuits

- We consider preparing an n-qubit MPS
    with H, CZ, T gates

- State is output of IQP circuit + T gates

- Fidelity remains zero for most steps 
    before growing rapidly (barren plateau pheno.)
 

- Shadow overlap acts like Hamming distance

(a)

n = 6 n = 50

(b) n = 50(a)

n = 6 n = 50

(b) n = 50



Monte-Carlo circuit optimization
 

with shadow overlap & fidelity 

for preparing 50-qubit MPS

(a)

n = 6 n = 50

(b) n = 50

Applications: Optimizing quantum circuits
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Monte-Carlo circuit optimization
 

with shadow overlap & fidelity 

for preparing 50-qubit MPS

(a)

n = 6 n = 50

(b) n = 50

Applications: Optimizing quantum circuits

(a)

n = 6 n = 50

(b) n = 50



Shadow overlap protocol

Model !
Random 
X/Y/Z-basis

Z-basis
1 0

1 0

0 1

Target state 
|𝝍⟩ = ∑𝒙	∈{𝟎,𝟏}𝒏 𝒙 𝝍 𝒙  

Lab state 𝝆

𝒛𝟎 = 𝟏𝟎𝟏𝟎𝟎𝟎𝟏
𝒛𝟏 = 𝟏𝟎𝟏𝟎𝟏𝟎𝟏

qubit k

n bits

|𝒔⟩

classical shadow of qubit k 
3 s s − I Post-meas. state of qubit k

𝝍𝒛𝟎,𝒛𝟏 ∝ 𝝍(𝒛𝟎) 0 + 𝝍(𝒛𝟏)|1⟩
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Open questions

- Which families of states have fast relaxation time 𝝉 ≤ 𝐩𝐨𝐥𝐲 𝒏 ?

- Can we certify all quantum states with few single-qubit measurements?

- Which states admit efficient access to their amplitudes 𝒙 ↦ 𝝍(𝒙)? 
    e.g. via classical neural networks?



Thank you!
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