Certifying almost all quantum states with few single-qubit measurements

Mehdi Soleimanifar (Caltech)

Based on joint work with Robert Huang and John Preskill

Quantum State Certification

Applications

Benchmarking quantum devices

ML tomography of quantum states

Optimizing quantum circuits $|0^n\rangle$ $|\psi\rangle$

Measure $U^{\dagger} \rho U$ with $\{ |0^n\rangle\langle 0^n|, I - |0^n\rangle\langle 0^n| \}$ or perform SWAP test on ρ and $|\psi\rangle$

- *For general* $|ψ$ *, requires applying highly complex <i>U* (or U^{\dagger}) s.t. $|\psi\rangle = U|0^n\rangle$

Classical shadows:

Option 1: Random Clifford circuits and Z-basis measurements

- *Requires deep quantum circuits involving random gates*
- *Costly post-processing with many queries for general* $|ψ\rangle$

Classical shadows:

Option 2: Random Pauli measurements

- *Requires* $exp(n)$ *samples for general* $|\psi\rangle$

Cross-Entropy Benchmarking (XEB)

$$
XEB \propto \mathbb{E}_{z \sim \rho} |\langle z | \psi \rangle|^2 - 1/2^n
$$

- Heuristic and can incorrectly certify when $\langle \psi | \rho | \psi \rangle \ll 1$

Many other methods use Pauli measurements

But only work for special families of states $|\psi\rangle$

Including:

- Hypergraph states, output states of IQP circuits [TM18]
- Bosonic Gaussian states [AGKE15]
- Fermionic Gaussian states [GKEA18]

Existing approaches to certification either

- Require deep quantum circuits
- Need exp(n) many single-qubit measurements
- Heuristic without performance guarantees
- Restricted to special families of (low-entangled) states

Can we certify quantum states with few single-qubit measurements?

Main results

For almost all *n*-qubit states $|\psi\rangle$, we can certify ρ is close to $|\psi\rangle$ using only $O(n^2)$ rounds of single-qubit measurements.

- Applies to any arbitrary ρ
- $O(n^2)$ samples even when $|\psi\rangle$ has $exp(n)$ circuit *complexity*
- 2 queries to amplitudes of $|\psi\rangle$ in each measurement round

What about structured/specific target states?

Relaxation time

Measurement distribution: $\pi(z) = |\langle z | \psi \rangle|^2$ for $z \in \{0, 1\}^n$ We think of $\pi(z)$ as stationary dist. of a random walk

Relaxation time

Measurement distribution: $\pi(z) = |\langle z | \psi \rangle|^2$ for $z \in \{0, 1\}^n$ We think of $\pi(z)$ as stationary dist. of a random walk τ is relaxation time of random walk to stationary dist. $\pi(z)$ 000 010 101 111 001 011

100 110

What about structured/specific target states?

Main results

For an *n*-qubit state $|\psi\rangle$ with relax. time τ , we can certify ρ is close to $|\psi\rangle$ using $\mathbf{O}(\tau)$ rounds of single-qubit measurements.

- $O(\tau^2)$ rounds of single-qubit Pauli measurements is sufficient. *Measurement protocol becomes offline independent of* $|\psi\rangle$ *.*
- *We show that* $\tau = O(n^2)$ for Haar random n-qubit states
- Also $\tau = \text{poly}(n)$ for many structured states *(e.g. phase states, ground states, GHZ state)*

What is the certification protocol?

One qubit at a time: compare locally, guarantee globally

For each copy of ρ , choose a qubit at random Compare the state of that qubit between ρ and $|\psi\rangle$

Issue: state of a single qubit \approx maximally mixed

Shadow overlap vs fidelity

Shadow overlap $\mathbb{E}[\omega]$ accurately tracks fidelity $\langle \psi | \rho | \psi \rangle$.

$\mathbb{E}[\omega] \geq 1 - \epsilon$ implies $\langle \psi | \rho | \psi \rangle \geq 1 - \tau \epsilon$. $\langle \psi | \rho | \psi \rangle \geq 1 - \epsilon$ implies $\mathbb{E}[\omega] \geq 1 - \epsilon$.

 τ as before is relaxation time of the walk induced by $|\psi\rangle$

Proof idea

Claim: Shadow overlap $\mathbb{E}[\omega] = \text{Tr}(L \rho)$ Observable $L =$ Approximate projector onto $|\psi\rangle\langle\psi|$

> $-L |\psi\rangle = |\psi\rangle$ $\langle \psi^{\perp}|L| \psi^{\perp} \rangle \leq 1 - 1/\tau$ *Relaxation time*

 $I - L$ is like a sparse Hamiltonian with ground state $|\psi\rangle$

Proof idea

Claim: Shadow overlap $\mathbb{E}[\omega] = \text{Tr}(L \rho)$ Observable $L =$ Approximate projector onto $|\psi\rangle\langle\psi|$

- $L |\psi\rangle = |\psi\rangle$ Relaxation time $-\langle \psi^{\perp}| L |\psi^{\perp}\rangle \leq 1-1/\tau$
- $L =$ (normalized) transition matrix of a random walk

Applications

Benchmarking quantum devices

ML tomography of quantum states

Optimizing quantum circuits $|0^n\rangle$ $|\psi\rangle$

Applications: Benchmarking quantum devices

ρ is prepared by a noisy quantum device

 $|\psi\rangle$ is the ideal state

Goal: Certify ($ψ$ | $ρ$ | $ψ$) is large

20 qubit Haar random state *White Noise* **20-qubit Haar** random state with white noise

20 qubit Haar random state *<u>Coherent</u> noise* **20-qubit Haar** random state with coherent noise

Applications

Benchmarking quantum devices

Optimizing quantum circuits $|0^n\rangle$ $|\psi\rangle$

 ρ is an unknown quantum state

$|\psi_{\theta}\rangle$ is an ML model with parameters θ (a.k.a. neural quantum state)

Goal: Train/Certify θ^* such that $\langle \psi_{\theta^*} | \rho | \psi_{\theta^*} \rangle$ is large

- Learning random binary phase states with n=120 :

$$
\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}(-1)^{\phi(x)}|x\rangle
$$

Highly entangled state for random $\phi(x) \in \{0, 1\}$

- Train and certify neural net using shadow overlap

Learning random binary phase states with n=120 :

$$
\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}(-1)^{\phi(x)}|x\rangle
$$

Highly entangled state for random $\phi(x) \in \{0, 1\}$

Learning random binary phase states with n=120 :

$$
\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}(-1)^{\phi(x)}|x\rangle
$$

Highly entangled state for random $\phi(x) \in \{0, 1\}$

- Learning random binary phase states with n=120 :

$$
\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}(-1)^{\phi(x)}|x\rangle
$$

Highly entangled state for random $\phi(x) \in \{0, 1\}$

- Can estimate non-local properties that need $2^{\textit{O}(n)}$ single-qubit meas.

Learning random binary phase states with n=120 :

$$
\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}(-1)^{\phi(x)}|x\rangle
$$

Highly entangled state for random $\phi(x) \in \{0, 1\}$

- Can estimate purity $\mathop{\sf tr}(\boldsymbol{\rho_A^2})$ that needs $2^{\boldsymbol{O}(|A|)}$ single-qubit meas.

Applications

Benchmarking quantum devices

ML tomography of quantum states

Applications Applications: Optimizing quantum circuits

 ρ_c is prepared by parametrized circuit c

 $|\psi\rangle$ is a target state

Goal: Optimize circuit to prepare $|\psi\rangle$: $\max_{C} \langle \psi | \rho_C | \psi \rangle$

- We consider preparing an n-qubit MPS with *H, CZ, T gates*
- State is output of *IQP circuit + T gates*

- We consider preparing an n-qu^{1.0} with *H, CZ, T gates*
-
- State is output of *IQP* circuit + $\frac{9}{5}$ 0.6.
Fidelity remains zero for most : $\frac{9}{5}$ 0.4.
hefore arowing rapidly (barren **Fidelity remains zero for most** : $\frac{1}{2}$ _{0.4}. before growing rapidly (barren

- **Shadow overlap acts like Haming 0.0**

Applications

Benchmarking quantum devices

ML tomography of quantum states

Optimizing quantum circuits $|0^n\rangle$ $|\psi\rangle$

Open questions

- Which families of states have fast relaxation time $\tau \leq poly(n)$?
- Can we certify all quantum states with few single-qubit measurements?
- Which states admit efficient access to their amplitudes $x \mapsto \psi(x)$? e.g. via classical neural networks?

Thank you!

Certifying almost all quantum states with few single-qubit measurements

Mehdi Soleimanifar (Caltech)

Based on joint work with Robert Huang and John Preskill

