Certifying almost all quantum states with few single-qubit measurements

Mehdi Soleimanifar (Caltech)

Based on joint work with Robert Huang and John Preskill

Quantum State Certification

Applications

Benchmarking quantum devices

ML tomography of quantum states

Optimizing quantum circuits $|0^n\rangle$ $|\psi\rangle$

Measure $U^{\dagger}\rho U$ with $\{|0^{n}\rangle\langle 0^{n}|, I - |0^{n}\rangle\langle 0^{n}|\}$ or perform SWAP test on ρ and $|\psi\rangle$

- For general $|\psi\rangle$, requires applying highly complex **U** (or **U**[†]) s.t. $|\psi\rangle = U|0^n\rangle$

Classical shadows:

Option 1: Random Clifford circuits and Z-basis measurements

- Requires deep quantum circuits involving random gates
- Costly post-processing with many queries for general $|\psi
 angle$

Classical shadows:

Option 2: Random Pauli measurements

- Requires $\exp(n)$ samples for general $|\psi\rangle$

Cross-Entropy Benchmarking (XEB)

$$\mathsf{XEB} \propto \mathbb{E}_{z \sim \rho} |\langle z | \psi \rangle|^2 - 1/2^n$$

- Heuristic and can incorrectly certify when $\langle oldsymbol{\psi} |
ho | oldsymbol{\psi}
angle \ll 1$

Many other methods use Pauli measurements

But only work for special families of states $|\psi\rangle$

Including:

- Hypergraph states, output states of IQP circuits [TM18]
- Bosonic Gaussian states [AGKE15]
- Fermionic Gaussian states [GKEA18]

Existing approaches to certification either

- Require deep quantum circuits
- Need exp(n) many single-qubit measurements
- Heuristic without performance guarantees
- Restricted to special families of (low-entangled) states

Can we certify quantum states with few single-qubit measurements?

Main results

For almost all *n*-qubit states $|\psi\rangle$, we can certify ρ is close to $|\psi\rangle$ using only $O(n^2)$ rounds of single-qubit measurements.

- Applies to any arbitrary ρ
- $O(n^2)$ samples even when $|\psi\rangle$ has exp(n) circuit complexity
- 2 queries to amplitudes of $|\psi\rangle$ in each measurement round

What about structured/specific target states?

Relaxation time

Measurement distribution: $\pi(z) = |\langle z | \psi \rangle|^2$ for $z \in \{0, 1\}^n$ We think of $\pi(z)$ as stationary dist. of a random walk

Relaxation time

Measurement distribution: $\pi(z) = |\langle z | \psi \rangle|^2$ for $z \in \{0, 1\}^n$ We think of $\pi(z)$ as stationary dist. of a random walk τ is relaxation time of random walk to stationary dist. $\pi(z)$ 001 011 010 101 111 000

What about structured/specific target states?

Main results

For an *n*-qubit state $|\psi\rangle$ with relax. time τ , we can certify ρ is close to $|\psi\rangle$ using $O(\tau)$ rounds of single-qubit measurements.

- $O(\tau^2)$ rounds of single-qubit Pauli measurements is sufficient. Measurement protocol becomes offline independent of $|\psi\rangle$.
- We show that $\tau = O(n^2)$ for Haar random n-qubit states
- Also τ = poly(n) for many structured states
 (e.g. phase states, ground states, GHZ state)

What is the certification protocol?

One qubit at a time: compare locally, guarantee globally

For each copy of ρ , choose a qubit at random Compare the state of that qubit between ρ and $|\psi\rangle$

Issue: state of a single qubit \approx maximally mixed

Shadow overlap vs fidelity

Shadow overlap $\mathbb{E}[\boldsymbol{\omega}]$ accurately tracks fidelity $\langle \boldsymbol{\psi} | \boldsymbol{\rho} | \boldsymbol{\psi} \rangle$.

$$\mathbb{E}[\boldsymbol{\omega}] \ge 1 - \epsilon \text{ implies } \langle \boldsymbol{\psi} | \boldsymbol{\rho} | \boldsymbol{\psi} \rangle \ge 1 - \tau \epsilon.$$
$$\langle \boldsymbol{\psi} | \boldsymbol{\rho} | \boldsymbol{\psi} \rangle \ge 1 - \epsilon \text{ implies } \mathbb{E}[\boldsymbol{\omega}] \ge 1 - \epsilon.$$

au as before is relaxation time of the walk induced by $|\psi
angle$

Proof idea

Claim: Shadow overlap $\mathbb{E}[\omega] = \operatorname{Tr}(L \rho)$ Observable L = Approximate projector onto $|\psi\rangle\langle\psi|$

> - $L \ket{\psi} = \ket{\psi}$ - $\langle \psi^{\perp} | L \ket{\psi^{\perp}} \leq 1 - 1/\tau$ Relaxation time

I - L is like a sparse Hamiltonian with ground state $|\psi\rangle$

Proof idea

Claim: Shadow overlap $\mathbb{E}[\omega] = \operatorname{Tr}(L \rho)$ Observable L = Approximate projector onto $|\psi\rangle\langle\psi|$

-
$$L \ket{\psi} = \ket{\psi}$$

- $\langle \psi^{\perp} | L \ket{\psi^{\perp}} \leq 1 - 1/\tau$ Relaxation time

L = (normalized) transition matrix of a random walk

Applications

Benchmarking quantum devices

ML tomography of quantum states

Optimizing quantum circuits $|0^n\rangle$ $|\psi\rangle$

p is prepared by a noisy quantum device

 $|\psi\rangle$ is the ideal state

Goal: Certify $\langle \psi | \rho | \psi \rangle$ is large

20-qubit Haar random state with **white noise**

20-qubit Haar random state with **coherent noise**

Applications

Benchmarking quantum devices

Optimizing quantum circuits $|0^n\rangle$ $|\psi\rangle$

p is an unknown quantum state

$|\psi_{\theta}\rangle$ is an ML model with parameters θ (a.k.a. neural quantum state)

Goal: Train/Certify θ^* such that $\langle \psi_{\theta^*} | \rho | \psi_{\theta^*} \rangle$ is large

- Learning random binary phase states with n=120 :

$$\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}(-1)^{\phi(x)}|x\rangle$$

Highly entangled state for random $\phi(x) \in \{0, 1\}$

- Train and certify neural net using shadow overlap

- Learning random binary phase states with n=120 :

$$\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}(-1)^{\phi(x)}|x\rangle$$

Highly entangled state for random $\phi(x) \in \{0, 1\}$

- Learning random binary phase states with n=120 :

$$\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}(-1)^{\phi(x)}|x\rangle$$

Highly entangled state for random $\phi(x) \in \{0, 1\}$

- Learning random binary phase states with n=120 :

$$\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}(-1)^{\phi(x)}|x\rangle$$

Highly entangled state for random $\phi(x) \in \{0, 1\}$

- Can estimate non-local properties that need $2^{O(n)}$ single-qubit meas.

- Learning random binary phase states with n=120 :

$$\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}(-1)^{\phi(x)}|x\rangle$$

Highly entangled state for random $\phi(x) \in \{0, 1\}$

- Can estimate purity $tr(\rho_A^2)$ that needs $2^{O(|A|)}$ single-qubit meas.

Applications

Benchmarking quantum devices

ML tomography of quantum states

Optimizing quantum circuits $|0^n\rangle$ $|\psi\rangle$

 ρ_{C} is prepared by parametrized circuit C

 $|\psi
angle$ is a target state

Goal: Optimize circuit to prepare $|\psi\rangle$: max_c $\langle \psi | \rho_c | \psi \rangle$

- We consider preparing an n-qubit MPS with *H*, *CZ*, *T* gates
- State is output of IQP circuit + T gates

0

Shadow Overlap

0

- We consider preparing an n-qu with H, CZ, T gates
- State is output of IQP circuit +

0

0

- We consider preparing an n-qu with *H*, *CZ*, *T* gates
- State is output of IQP circuit +

Fidelity

Shadow Overlap

Shadow Overlap

0.

- We consider preparing an n-qu with *H, CZ, T gates*
- State is output of IQP circuit +

0

Shadow Overlap

0

- We consider preparing an n-qu with H, CZ, T gates
- State is output of IQP circuit +

0

Shadow Overlap

0

- We consider preparing an n-qu with H, CZ, T gates
- State is output of IQP circuit +

Fidelity

Shadow Overlap

- - •

Fidelity

Shadow Overlap

- We consider preparing an n-qι with *H, CZ, T gates*
- State is output of IQP circuit +

0

Shadow Overlap

0

- We consider preparing an n-qu with *H*, *CZ*, *T* gates
- State is output of IQP circuit +
- Fidelity remains zero for most : before growing rapidly (barren

- Shadow overlap acts like Ham

Applications

Benchmarking quantum devices

ML tomography of quantum states

Optimizing quantum circuits $|0^n\rangle$ $|\psi\rangle$

Open questions

- Which families of states have fast relaxation time $\tau \leq poly(n)$?
- Can we certify all quantum states with few single-qubit measurements?
- Which states admit efficient access to their amplitudes $x \mapsto \psi(x)$? e.g. via classical neural networks?

Thank you!

Certifying almost all quantum states with few single-qubit measurements

Mehdi Soleimanifar (Caltech)

Based on joint work with Robert Huang and John Preskill

